Timing is Everything: Labor Market Winners and Losers during Boom-Bust Cycles

Erik Katovich University of Geneva Dominic Parker UW-Madison Steven Poelhekke Vrije Universiteit Amsterdam CEPR

SOLE

May 12, 2023

- Decline of fossil fuel sectors will displace millions of workers
 - > Which types of workers are most vulnerable?

Introduction

Data

Empirical Strategy 000 Results

Mechanisms 00

- Decline of fossil fuel sectors will displace millions of workers
 - > Which types of workers are most vulnerable?
- Renewable energy and critical mining sectors will expand employment
 - > Which types of entrants will benefit?

- Decline of fossil fuel sectors will displace millions of workers
 - > Which types of workers are most vulnerable?
- Renewable energy and critical mining sectors will expand employment
 - > Which types of entrants will benefit?

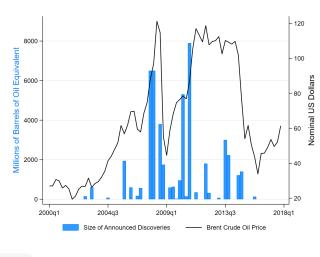
Labor reallocation between booming and busting sectors is not frictionless:

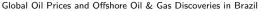
- > Search and matching costs (Pissarides, 2014; Albrecht & Vroman, 2002)
- > Skill loss during unemployment (Ortego-Marti, 2017)
- > Skill mismatch between declining and expanding sectors (Sahin et al., 2014)
- > Persistent penalties for bad entry timing (Davis & von Wachter, 2012)

- Decline of fossil fuel sectors will displace millions of workers
 - > Which types of workers are most vulnerable?
- Renewable energy and critical mining sectors will expand employment
 - > Which types of entrants will benefit?

Labor reallocation between booming and busting sectors is not frictionless:

- > Search and matching costs (Pissarides, 2014; Albrecht & Vroman, 2002)
- Skill loss during unemployment (Ortego-Marti, 2017)
- > Skill mismatch between declining and expanding sectors (Sahin et al., 2014)
- > Persistent penalties for bad entry timing (Davis & von Wachter, 2012)


► Commodity-dependent countries face higher sectoral volatility → more reallocation frictions

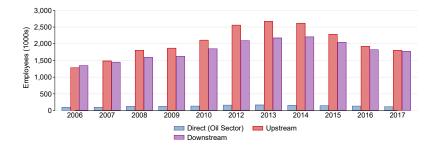

Introduction •000 Data 00 Empirical Strategy

Results

Mechanis 00

Context: Boom and Bust in Brazil's Oil and Gas Sector

Petrobras Investment


Data

Introduction

En

Empirical Strategy

Results 00000 Mechanism: 00

Identifying Upstream and Downstream Sectors Using Input-Output Table

• Oil-Linked Employment Growth Relative to Other Sectors

Introduction

Data 00 Empirical Strategy 000 Results 00000 Mechanisms 00 Conclusion O 3

1 **Timing of Entry:** How does timing of workers' entry into Brazil's oil sector relative to boom and bust cycles affect labor market outcomes?

Data

Results 00000 Mechanisms 00

- 1 **Timing of Entry:** How does timing of workers' entry into Brazil's oil sector relative to boom and bust cycles affect labor market outcomes?
 - > Early entrants capture almost all the benefits of the boom
 - > Later entrants suffer significant earnings and employment penalties

Introduction

Data

Empirical Strategy 000 Results 00000 Mechanisms 00 Conclusion O

sion

4

- 1 **Timing of Entry:** How does timing of workers' entry into Brazil's oil sector relative to boom and bust cycles affect labor market outcomes?
 - > Early entrants capture almost all the benefits of the boom
 - > Later entrants suffer significant earnings and employment penalties
- 2 **Heterogeneity by Education:** Does exposure to oil exert heterogeneous effects on workers of different education levels?

Introduction

Data

- 1 **Timing of Entry:** How does timing of workers' entry into Brazil's oil sector relative to boom and bust cycles affect labor market outcomes?
 - > Early entrants capture almost all the benefits of the boom
 - > Later entrants suffer significant earnings and employment penalties
- 2 **Heterogeneity by Education:** Does exposure to oil exert heterogeneous effects on workers of different education levels?
 - > High-ed workers earn more during booms and keep their jobs during busts
 - > Low-ed workers never enjoy earnings premiums during booms and lose their jobs during busts

Results 00000 Aechanisms

- 1 **Timing of Entry:** How does timing of workers' entry into Brazil's oil sector relative to boom and bust cycles affect labor market outcomes?
 - > Early entrants capture almost all the benefits of the boom
 - > Later entrants suffer significant earnings and employment penalties
- 2 **Heterogeneity by Education:** Does exposure to oil exert heterogeneous effects on workers of different education levels?
 - > High-ed workers earn more during booms and keep their jobs during busts
 - > Low-ed workers never enjoy earnings premiums during booms and lose their jobs during busts
- 3 Mechanisms: Why do high-education early entrants do so much better?

- 1 **Timing of Entry:** How does timing of workers' entry into Brazil's oil sector relative to boom and bust cycles affect labor market outcomes?
 - > Early entrants capture almost all the benefits of the boom
 - > Later entrants suffer significant earnings and employment penalties
- 2 Heterogeneity by Education: Does exposure to oil exert heterogeneous effects on workers of different education levels?
 - > High-ed workers earn more during booms and keep their jobs during busts
 - > Low-ed workers never enjoy earnings premiums during booms and lose their jobs during busts
- 3 Mechanisms: Why do high-education early entrants do so much better?
 - $^>$ Accumulate knowledge in professional roles \rightarrow job and occupation stability
 - > Later entrants compete with glut of new oil-specific graduates

Introduction

Data 00

Empirical Strategy 000 Results 00000 /lechanisms DO

Data: Worker-Level Panels

RAIS (*Relação Anual de Informações Sociais*): linked registry of universe of formal employers-employees in Brazil

Identified worker-level panel data at job-year level (2003-2017)

Data

Empirical Strategy

Results 00000 Mechanisms 00

Data: Worker-Level Panels

RAIS (Relação Anual de Informações Sociais): linked registry of universe of formal employers-employees in Brazil

Identified worker-level panel data at job-year level (2003-2017)

In the paper, we analyze three types of entrants into oil-linked sectors:

- Experienced Workers: workers who voluntarily leave a job and are rehired by a new firm within 4 months
- New Hires: workers hired into their first formal job, who can make education decisions based on anticipated sectoral dynamics
- Unemployed/Informal Hires: workers hired out of unemployment or the informal sector

.

Data: Worker-Level Panels

RAIS (*Relação Anual de Informações Sociais*): linked registry of universe of formal employers-employees in Brazil

Identified worker-level panel data at job-year level (2003-2017)

In the paper, we analyze three types of entrants into oil-linked sectors:

- Experienced Workers: workers who voluntarily leave a job and are rehired by a new firm within 4 months
- New Hires: workers hired into their first formal job, who can make education decisions based on anticipated sectoral dynamics
- Unemployed/Informal Hires: workers hired out of unemployment or the informal sector

Goal: Estimate causal effects of being hired into an oil-linked sector on subsequent wages, employment, and earnings

Introduction 0000 Data 00 Empirical Strategy

Results

Mechanisms 00

Goal: Estimate causal effects of being hired into an oil-linked sector on subsequent wages, employment, and earnings

Challenge: Workers are not randomly hired into oil

Introduction 0000 Data 00 Empirical Strategy

Results 00000 Mechanisms 00

Goal: Estimate causal effects of being hired into an oil-linked sector on subsequent wages, employment, and earnings

Challenge: Workers are not randomly hired into oil

Strategy: Match workers hired into an oil-linked establishment in year t with counterfactual workers hired into other sectors in same year

Exact match on:

- **Demographics:** schooling, sex, race, age bin
- ▶ Previous labor market experience: establishment (t − 1, t − 2), occupation category (t − 1, t − 2), wage bin (t − 1, t − 2)

Destination municipality

ntroduction 2000 Data Empirical Strategy 00 000 Resu

Mechan 00

Step 2: Event Studies Around Hire into Oil-Linked Sector

- Let E_{ic} be period when worker *i* in cohort *c* is treated by hire into oil. Let $K_{ict} = t E_{ic}$ be number of years before or after event
- Let Y_{ict} be outcome for i in cohort c in year t
- Include worker and year fixed effects; cluster standard errors at worker level
- Control group = matched workers hired into other sectors in year t

$$Y_{ict} = \delta_i + \lambda_t + \sum_{k \neq -1} [\mathbb{1}(K_{ict} = k)]\beta_k + \epsilon_{it}$$

 Introduction
 Data
 Empirical Strategy
 Results
 Mechanisms

 0000
 00
 0●0
 00000
 00

Step 2: Event Studies Around Hire into Oil-Linked Sector

- Let E_{ic} be period when worker *i* in cohort *c* is treated by hire into oil. Let $K_{ict} = t E_{ic}$ be number of years before or after event
- Let Y_{ict} be outcome for *i* in cohort *c* in year *t*
- Include worker and year fixed effects; cluster standard errors at worker level
- Control group = matched workers hired into other sectors in year t

$$Y_{ict} = \delta_i + \lambda_t + \sum_{k
eq -1} [\mathbb{1}(K_{ict} = k)] \beta_k + \epsilon_{it}$$

Standard event study approach: center staggered events using relative time indicators to estimate average $\hat{\beta}_k$'s

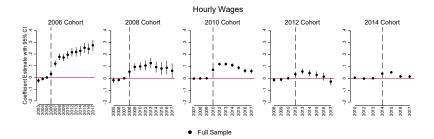
Introduction 0000 Data 00 Empirical Strategy

Results 00000 Mechanisms 00

Step 2: Event Studies Around Hire into Oil-Linked Sector

- Let E_{ic} be period when worker *i* in cohort *c* is treated by hire into oil. Let $K_{ict} = t E_{ic}$ be number of years before or after event
- Let Y_{ict} be outcome for i in cohort c in year t
- Include worker and year fixed effects; cluster standard errors at worker level
- Control group = matched workers hired into other sectors in year t

$$Y_{ict} = \delta_i + \lambda_t + \sum_{k \neq -1} [\mathbb{1}(K_{ict} = k)]\beta_k + \epsilon_{it}$$

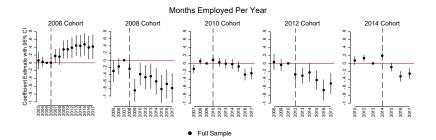

Standard event study approach: center staggered events using relative time indicators to estimate average $\hat{\beta}_k$'s

We're interested in cohort-specific $\hat{\beta_{ck}}$'s \Rightarrow estimate event studies separately for each cohort *c* relative to matched controls

Data 00 Empirical Strategy

Results 00000 Mechanisms 00

Results: Hourly Wages After Hire into Oil-Linked Sector


Note: Wages deflated to 2018 BRL and transformed using IHS. Standard errors clustered at individual level. This specification keeps only employed individuals.

Introduction 0000 Data

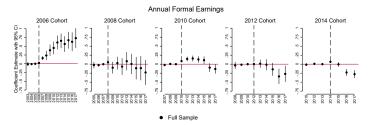
Empirical Strategy

Results

Mechanisms 00

Note: Months employed ranges from zero if worker never appeared in RAIS registry during a year, to 12 if individual was employed each month. This specification keeps all treated individuals and matched controls (whether formally employed or not).

ntroduction

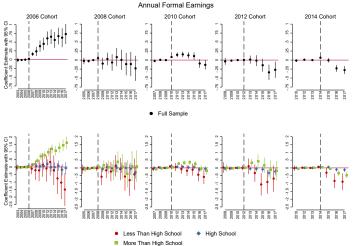

Data

Empirical Strategy

Results

Mechanisms 00

Results: Annual Earnings After Hire into Oil-Linked Sector



Note: Annual earnings refers to total earnings across all formal jobs. Earnings are transformed using the IHS and deflated to 2018 BRL. This specification keeps all treated individuals and matched controls, whether formally employed or not. In periods where individuals do not appear in panel, they are ascribed a value of zero formal earnings for this period.

Introduction 0000 Data 00 Empirical Strategy 000 Results

Mechanism 00

Results: Annual Earnings After Hire into Oil-Linked Sector

Note: Annual earnings refers to total earnings across all formal jobs. Earnings are transformed using the IHS and deflated to 2018 BRL. This specification keeps all treated individuals and matched controls, whether formally employed or not. In periods where individuals do not appear in panel, they are ascribed a value of zero formal earnings for this period.

Introduction 0000 Data OO Empirical Strategy 000 Results

Mechani: 00

Introduction 0000 Data

Empirical Strategy

Results

Mechanisms 00

1 Restrict sample to **directly oil-linked sectors** (no upstream or downstream) \blacktriangleright Direct Oil \rightarrow Effects are larger

- 1 Restrict sample to **directly oil-linked sectors** (no upstream or downstream) $\stackrel{\bullet}{\rightarrow}$ Direct Oil \rightarrow Effects are larger
- 2 Limit sample to **municipalities located within 100km. of a shipyard** (more likely to be truly oil-linked) \blacktriangleright Near Shipyards \rightarrow Effects are larger

Data

Mechanisms 00

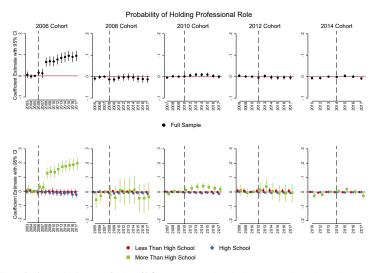
- 1 Restrict sample to **directly oil-linked sectors** (no upstream or downstream) $\stackrel{\bullet}{\rightarrow}$ Direct Oil \rightarrow Effects are larger
- 2 Limit sample to **municipalities located within 100km. of a shipyard** (more likely to be truly oil-linked) \blacktriangleright Near Shipyards \rightarrow Effects are larger
- 3 Restrict sample to workers who share common support across cohorts \rightarrow Common Support \rightarrow Effects are unchanged

Data

Empirical Strategy 000

Results

Mechanisms 00

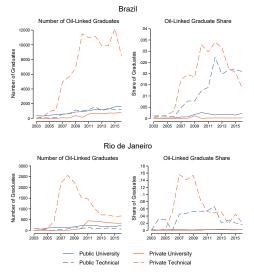

- 1 Restrict sample to **directly oil-linked sectors** (no upstream or downstream) \blacktriangleright Direct Oil \rightarrow Effects are larger
- 2 Limit sample to **municipalities located within 100km. of a shipyard** (more likely to be truly oil-linked) \blacktriangleright Near Shipyards \rightarrow Effects are larger
- 3 Restrict sample to workers who share common support across cohorts $\label{eq:common support}$ \rightarrow Effects are unchanged
- 4 Re-estimate preferred specification using Callaway and Sant'Anna (2021) estimator to account for heterogeneous treatment effects ▶ csdid
 → Effects are unchanged

Introduction 0000 Data 00 Empirical Strate

Results

Mechanisms 00

Why Do High-Ed Early Entrants Do So Well? (Mechanism I)



Note: Professional roles are defined as CBO occupations with codes beginning with 2. These roles are primarily described as "researcher," "scientist," "engineer," "pilot," "doctor," "nurse," "professor," "lawyer,"

and	"analyst."	Managerial Roles	pation Stability			
ntroduction	Data	Empirical Strategy	Results	Mechanisms	Conclusion	
0000	00	000	00000	•0	0	

Mech. II: Education Response Increases Competition for Late Entrants | 16

Oil-Linked Degree Programs

Note: Data are drawn from Brazil's annual Census of Higher Education.

l.	+	od	~+		
	LI.	ou	C.		

Empirical Strategy

Data

0.

Mechanisms

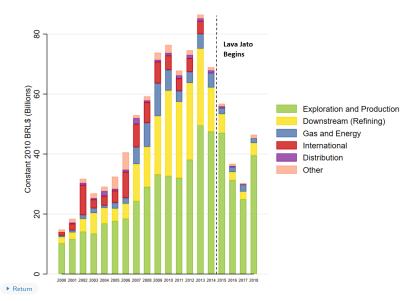
Conclusions

- Timing of entry relative to boom-bust cycle has lasting impacts on workers: early entrants earn more than matched controls; later entrants suffer earnings and employment penalties
- Boom-bust cycle generates inequality between and within cohorts: high-ed workers earn more during booms and keep jobs during busts; low-ed workers are margin of adjustment for firms facing negative shocks
- ► Oil boom provoked growth in sector-specific higher education → more competition for later entrants
- Broader Implications: low-education workers are most vulnerable during transition away from fossil fuels; labor market benefits of renewables booms may accrue disproportionately to experienced early entrants

E-mail for feedback: erik.katovich@unige.ch

troduction 000 Ei

Data


Empirical Strategy

Results

Mechanis 00 Conclusion

17

Petrobras Investment (Billions of 2010 \$BRL), by Area

•0000000000000000

Using Input-Output Matrix (67 \times 127) to Identify "Oil-Linked" Sectors $_{|19}$

Oil and Gas Sector	Leontief Coefficient
Oil and Gas Extraction and Support Activities	1.068
Top Upstream Sectors	
Legal, Accounting, and Consulting Services	0.055
Land Transportation of Cargo	0.039
Petroleum Refining and Coke Plants	0.032
Fabrication of Machines and Mechanical Equipment	0.027
Production of Pig Iron, Alloys, Steel, and Steel Pipes	0.023
Storage and Logistics	0.021
Construction	0.021
Maintenance, Repair, and Installation of Machines and Equipment	0.020
Architecture, Engineering, and R&D	0.018
Aquatic Transportation	0.017
Top Downstream Sectors	
Petroleum Refining and Coke Plants	0.411
Land Transportation of Cargo	0.088
Production of Organic and Inorganic Polymers and Resins	0.053
Electrical Energy and Utilities	0.047
Extraction of Non-Ferruginous Metals	0.045
Fabrication of Non-Metalic Mineral Products	0.029
Production and Refining of Sugar	0.029
Air Transportation	0.028
Production of Biofuels	0.027
Fabrication of Cellulose and Paper Products	0.026

5-Digit Input-Output SCN Codes

5-Digit Input-Output SCN Codes

 \Downarrow (SCN/CNAE 2.0 Conversion Table)

2-Digit CNAE 2.0 Activity Code Roots

5-Digit Input-Output SCN Codes

 \Downarrow (SCN/CNAE 2.0 Conversion Table)

2-Digit CNAE 2.0 Activity Code Roots

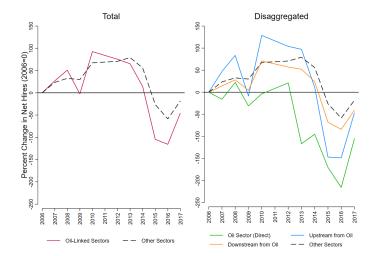
 \Downarrow (Manual Assignment)

7-Digit CNAE 2.0 Activity Subclasses

5-Digit Input-Output SCN Codes

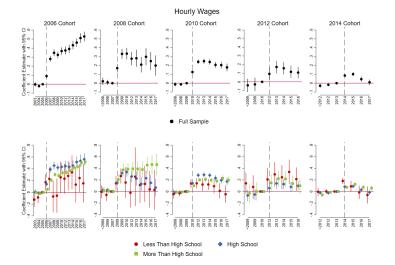
 \Downarrow (SCN/CNAE 2.0 Conversion Table)

2-Digit CNAE 2.0 Activity Code Roots

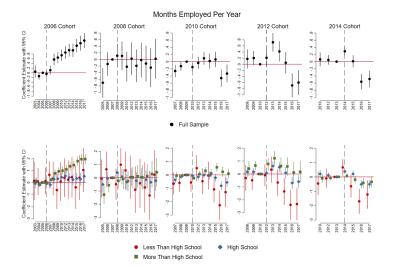

 \Downarrow (Manual Assignment)

7-Digit CNAE 2.0 Activity Subclasses

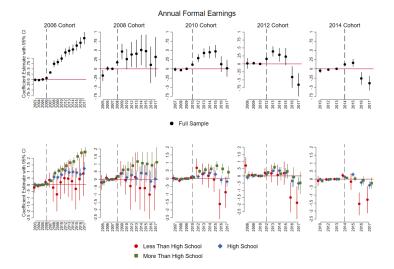
∜

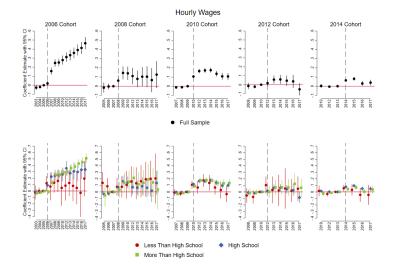

14 Directly-Linked, 109 Upstream, 31 Downstream Subclasses Preturn

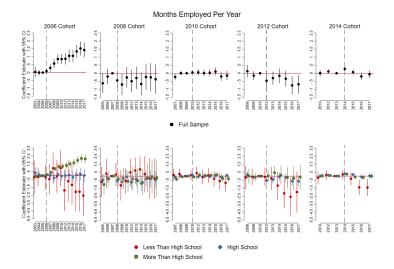
Net Employment Growth

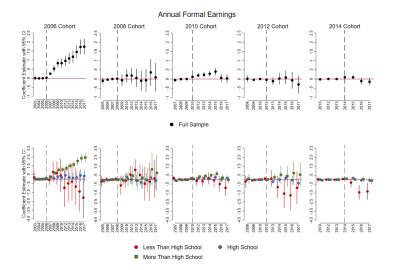


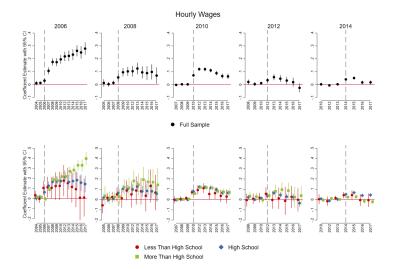
Return

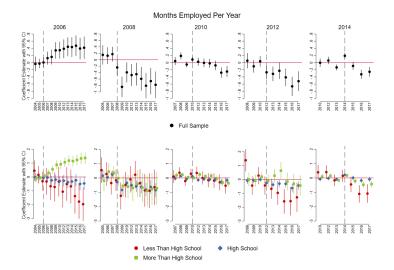

Direct-Loose Poached: Wages

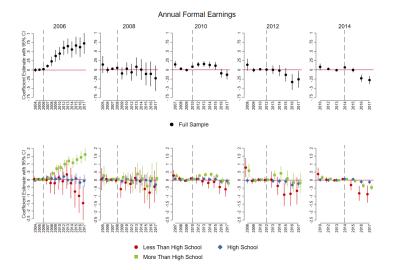

Direct-Loose Poached: Months Employed

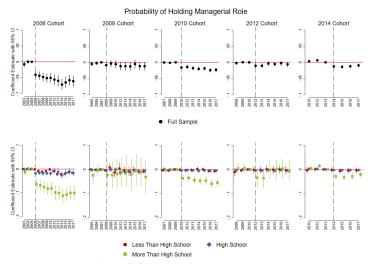

Direct-Loose Poached: Annual Earnings


Close to Shipyards Poached: Wages

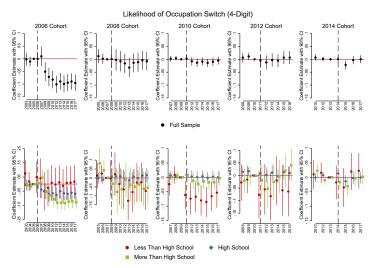

Close to Shipyards Poached: Months Employed


Close to Shipyards Poached: Annual Earnings


Callaway and Sant'Anna (2021): Wages


Callaway and Sant'Anna (2021): Months Employed

Callaway and Sant'Anna (2021): Annual Earnings


Managerial Roles for Experienced Hires

Note: Managerial roles are defined as CBO occupations with codes beginning with 1. These roles are primarily described as "leader," "director," or "manager."

Return

Occupation Switching for Experienced Hires

Note: Outcome is a 0/1 indicator of whether the worker holds a different 4-digit CBO 2.0 Occupation Code from the one they were originally poached into.

Return

Defining Oil-Linked College Majors

	ajors (Narrow Definition)
Petroleum Engineering	Environmental Management
Geological Engineering	Naval maintenance
Naval Engineering	Petrochemical Maintenance
Shipbuilding	Mining & Extraction
Shipbuilding (non-motorized)	Marine Navigation
Naval Construction	Operation of Ships
Environmental Control	Paleontology
Water Pollution Control	Petrology
Extraction of Petroleum & Gas	Processing of Petroleum & Petrochemicals
Geoscience	Petroleum Refining
Geophysics	Environmental Cleanup
Geology	Environmental Protection Technology

Disaggregate degree programs into:

- 4-Year and Technical
- Public and Private
- STEM and Other

Return