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Abstract

Critical minerals and metals are essential for the clean energy transition, but their extrac-
tion raises concerns over local environmental and socioeconomic impacts. We combine a
global registry of 9,836 critical mineral and metal mines with geospatial data and leverage
exogenous commodity price variations to causally identify local mining impacts. We find
that price booms for critical minerals and metals increase deforestation and economic ac-
tivity around mines—but only in places with high corruption or where mines are operated
by firms from weakly governed countries. The cumulative increase in critical commod-
ity prices between 2000-2022 reduced forest cover by 3.6% and raised economic activity
by 6% near mining sites, relative to baseline levels. This suggests that environmental and
anti-corruption regulations mitigate deforestation but also limit local economic benefits by
constraining firms’ responsiveness to price changes. Household survey data show criti-
cal mining booms also raise local wealth and off-farm employment, indicating positive
welfare spillovers. The results underscore the trade-offs and distributional consequences
involved in expanding critical mineral supply for the clean energy transition.
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1 Introduction

Efforts to mitigate global climate change have accelerated the build-out of clean energy
technologies. Between 2022 and 2023, worldwide solar photovoltaic capacity additions grew
by 85%, wind energy capacity additions by 60%, and electric vehicle production by 35% (IEA,
2024a). Renewable energy capacity is forecast to expand a further two to three times by 2030,
and battery production is forecast to grow by a factor of five (IEA, 2024b). Clean energy
technologies require large quantities of “critical” mineral and metal inputs, including cobalt,
copper, graphite, lithium, nickel, and rare earth metals, leading to booming demand for these
commodities (World Bank, 2020). Total demand for critical minerals and metals is forecast
to grow 68%-92% by 2050 depending on the pace of the energy transition, with demand for
lithium projected to grow by up to 945% and graphite by up to 252% (IEA, 2024a).! This de-
mand explosion presents both opportunity and risk for the communities and countries where
critical mineral deposits are found, as previous mining booms have led to rising incomes and
export revenues on one hand, and environmental degradation and social conflict on the other
(Luckeneder et al., 2025; Girard et al., 2022; Mamo et al., 2019; von der Goltz and Barnwal,
2019; Berman et al., 2017; Aragon and Rud, 2013).

As critical mineral and metals mining expands to meet the booming demand of the energy
transition, what is the emerging impact of extraction, and how is this impact distributed? In
this paper, we combine a global registry of 9,836 critical mineral and metal mines from the
S&P Global Mining and Metals Database (2023) with high-resolution, longitudinal geospatial
data on land use changes, economic activity, air pollution, violent conflict, and socioeconomic

development indicators between 2000 and 2022 to measure local socioeconomic and environ-

1There is no fixed, universal definition of which minerals and metals are “critical,” as the applicability of this
term to specific commodities evolves over time with demand and supply risks, production and reserve levels, and
stakeholders’ position in supply chains (Ramdoo et al., 2023). In this study, we define critical minerals and met-
als to include alumina, antimony, bauxite (aluminum ore), chromite (chromium ore), chromium, cobalt, copper,
graphite, heavy mineral sands, ilmenite (titanium ore), lanthanides, lithium, manganese, molybdendum, nickel,
niobium, palladium, platinum, rutile (titanium ore), scandium, tantalum, tin, titanium, tungsten, vanadium, yt-
trium, zinc, and zircon. This classification is drawn from the International Energy Agency’s Final List of Critical
Minerals (IEA, 2022) and omits minerals and metals that do not appear as primary commodities for any mine in
the S&P Global database. Copper was notably absent from the IEA’s 2022 list, as well as lists maintained by the
US and EU prior to 2023, but has since been added to these lists in consideration of copper’s essential role in elec-
tricity infrastructure and its potential for supply chain disruptions (Cossins-Smith, 2023). Non-critical minerals
and metals include coal (20% of non-critical mines), diamonds, gold (50.6% of non-critical mines), iron ore (8.2%
of non-critical mines), lead, phosphate, potash, silver, and uranium oxide. Throughout this paper, sites where
critical minerals are extracted are referred to as “critical mines.”



mental outcomes at varying distances around critical mining sites. To identify causal impacts
of mining on these outcomes, we estimate fixed effects specifications that leverage exogenous
variations in world commodity prices.

Furthermore, building on evidence that mine ownership and governance are important
determinants of local mining impacts (Christensen et al., 2023), we test whether effects of
commodity price shocks vary along two dimensions of institutional quality. First, we use
data on subnational corruption (Crombach and Smits, 2024) to measure local corruption lev-
els around each mine. Second, we combine information on mining companies” headquar-
ters countries with data on country-level governance (World Bank, 2024) to measure home-
country institutional constraints on mine operators. Whether local and home-country insti-
tutional quality amplify or dampen mine-level responsiveness to price changes is ultimately
an empirical question. On one hand, corruption and institutional voids may raise transaction
costs, uncertainty, and security risks, limiting mining companies” ability to scale when prices
rise. On the other hand, weak institutions may enable firms to avoid permitting and com-
pliance requirements, co-opt local officials, and overcome community opposition—consistent
with “greasing-the-wheels” mechanisms of corruption (Dreher and Gassebner, 2013; Kauf-
mann and Wei, 1999). Likewise, mining companies based in poorly governed countries may
face greater expropriation risk or financing constraints, but may also be less constrained by
extraterritorial anti-corruption rules and could possess tacit know-how for navigating com-
plex political economies, potentially increasing their effectiveness in high-corruption settings
(Rexer, 2024). Our empirical strategy tests which of these forces dominates.

Our data reveal that the number of registered critical mines around the world grew by
up to 6.5 times between 2000 and 2022, with the highest growth in mine count observed for
graphite, lithium, and rare earth metals.”> The majority of critical mines are concentrated in
Asia-Pacific (32%) and the US and Canada (31%) and operated by companies based in Canada
(23%), Australia (15%), China (12%), and the United States (12%). Despite the popular asso-

ciation of critical mining with extreme poverty and conflict, 59% of critical mines operating

2While the S&P Global Mining and Metals Database (2023) offers high-quality, reliable information on mine
locations, commodities produced, and ownership over time, information on dates of mine opening or production
start are less reliable. We use the year of mine registration in the S&P database as a proxy for mine opening. Based
on these registration dates, the number of critical mines grew by somewhere between 1.8 and 6.5 times during the
study period, with these high and low bounds representing extreme assumptions of whether all or none of the
mines included in a major data acquisition by S&P Global in 2013 were present prior to 2000. Growth in critical
mines is notably higher than growth in non-critical mines (1.6 to 5.2 times) over the same period.



in 2022 were located in high-income countries, compared to just 7% in low-income countries.
Approximately 94% of critical mines did not experience any violent conflict within 20km of
their location between 2000 and 2022.%> Using Demographic and Health Survey data (which
cover over 90 low and middle-income countries), areas around critical mines exhibit slightly
lower than average household wealth and sanitation access, but higher than average levels of
education, literacy, and birth weight and equivalent levels of infant mortality. Thus, looking
across socioeconomic indicators, critical mining areas are not disproportionately disadvan-
taged, even within this developing country sample.

Regression results indicate that, on average, a 10% increase in world critical mineral prices
reduces forest cover by 0.3p.p. and increases economic activity by 0.9% around critical mines.
Applying these estimates to baseline levels of forest cover and economic activity reveals that
the more-than doubling of critical minerals prices between 2000-2022 cumulatively accounted
for a 3.6% reduction in forest cover and 6% increase in economic activity in areas near critical
mines. This environment-growth tradeoff is strongest in places with severe local corruption,
where a 10% increase in mineral prices reduces forest cover by 2p.p. and increases GDP
by 3.8% around critical mines. A similar, though weaker, pattern holds for mines operated
by companies based in countries with weak governance. Mapping the global distribution of
deforestation and economic effects from the critical mining boom highlights that while critical
mines are found in every region of the world and at all income levels, the most meaningful
environmental and economic impacts are concentrated in emerging countries in Asia, Latin
America, and sub-Saharan Africa.

We also find a positive correlation between local corruption around mining sites and
weak governance in multinational mining companies” headquarters locations. This indicates
positive-assortative matching between mines and operators, through which weakly governed
companies specialize in mining in challenging institutional contexts. There are no measurable
effects of price shocks on forest cover or economic activity for mines in low-corruption places
or around mines operated by companies based in countries with good governance. There

are also no measurable effects of commodity price shocks on levels of violent conflict or air

3Some critical mining does occur in conflict hotspots. A tantalum mine in Vichada, Colombia experienced
12 conflict events within a 20km radius over this period, a graphite mine in Kitgum, Uganda experienced 14
conflicts, a lithium mine in Tanganyika, DRC experienced 21 conflicts, a copper mine in Davao de Oro, Philippines
experienced 16 conflicts, and a cobalt mine in Haut-Katanga, DRC experienced 5 conflicts.



pollution near critical mines.

Finally, we use household-level data from the Demographic and Health Surveys (DHS) to
assess the degree to which economic gains from mining booms translate into broader welfare
gains for mining communities. We find that night light intensity around mines is significantly
correlated with indicators of well-being such as household wealth, literacy, child mortality,
and sanitation. Furthermore, regression estimates show that a 10% critical commodity price
increase is associated with a 1-1.6% rise in local household wealth and 0.3-1.6% increase
in non-agricultural employment. These findings indicate that mining booms can generate
positive development spillovers—including structural transformation in the labor market—

at least in the short-term.

1.1 Related Literature and Contributions

Previous work has documented associations between mining and social conflict (Blair
etal., 2021; Berman et al., 2017), corruption (Asher and Novosad, 2023), deforestation (Ladewig
et al., 2024; Goldblatt et al., 2023; Girard et al., 2022; Ranjan, 2019), air pollution—particularly
for coal mining (Chu et al., 2023; Hendryx et al., 2020; Huertas et al., 2012)—and chemical
pollution—particularly mercury exposure from artisanal gold mining (Soe et al., 2022). At the
same time, resource booms are associated with increased economic activity, wages, and job
opportunities in mining areas (Aragon and Rud, 2013; Allcott and Keniston, 2018). von der
Goltz and Barnwal (2019) document higher incidence of health conditions linked to heavy
metal exposure, but also increased household wealth around mining sites across 44 develop-
ing countries. Christensen et al. (2023) show that mine ownership and governance play a key
role in determining whether mines impose local harms or benefits.

This body of evidence suggests there is a tradeoff between negative environmental and so-
cial externalities of mining on the one hand and economic growth on the other. Still, existing
studies have tended to analyze specific commodities or country contexts, and rarely consider
critical minerals. For instance, Pefialoza-Pacheco et al. (2023) study local impacts of lithium
mining in Chile and document declines in groundwater levels, forest lands, and economic
activity—offering a specific case where negative local economic and environmental impacts
coincide. Ash (2024) conducts a qualitative case study of nickel exploration in the Solomon

Islands and highlights risks to indigenous peoples. Other studies conduct engineering-based
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lifecycle assessments (Zapp et al., 2022; Kaunda, 2020; Arshi et al., 2018), analyze critical min-
erals at the country-level (Shi et al., 2023; Islam et al., 2022) or firm-level (Castillo et al., 2024),
or describe supply chain issues (Berthet et al., 2024; Zhao et al., 2023; Sohag et al., 2023; McLel-
lan et al., 2016). Carr-Wilson et al. (2024) conduct a systematic review of literature on critical
mining and identify large gaps in coverage of most critical minerals and world regions. Like-
wise, Agusdinata et al. (2018) review the literature on lithium mining and highlight a lack of
evidence on local socio-environmental impacts.

The existing global evidence on critical mining is primarily descriptive. Owen et al. (2023)
assess the overlap between critical mining locations and lands occupied by indigenous, tradi-
tional, and peasant peoples and conclude that more than half of the critical mining resource
base is located on or near these areas. Lebre et al. (2020) intersect critical mining sites with
measures of socioeconomic and environmental risk, finding that 84% of platinum mines and
70% of cobalt mines lie in areas defined as high-risk by their methodology. Our primary con-
tribution is to provide the first causal empirical evidence on local critical mining impacts on
environmental and socioeconomic development outcomes around nearly all critical mining
sites in the world. In doing so, our results provide policymakers with clear guidance about
the likely effects of the continuing clean energy transition on mining communities.

Local impacts of critical minerals and metals are of particular concern due to their associ-
ation with conflict and worker exploitation in weak governance contexts. For instance, cobalt
mining in the Democratic Republic of the Congo (DRC) provides most of the world’s supply
for this critical input into batteries and electronics, but the Congolese cobalt sector has been
associated with armed militia conflicts, dangerous working conditions, and environmental
damage (Sovacool, 2019). At the same time, policies designed to block sourcing of conflict
minerals from the DRC have had unintended consequences, prompting militia groups to turn
from mining to looting of civilians (Parker and Vadheim, 2017) and increasing infant mortality
by depriving communities of a valuable income source (Parker et al., 2016). Careful consid-
eration of how governance shapes harms and benefits of critical mining is therefore essential
to maximize positive local impacts and minimize local damages while ensuring reliable ac-
cess to material inputs for the clean energy transition. We contribute by mapping the global
distribution of mining impacts and quantifying how institutional factors shift the magnitude

and incidence of those impacts across places and firms.



2 Data

We construct a mine-level annual panel dataset ranging from 2000 to 2022 based on a
global registry of 9,836 critical mines (S&P Global Mining and Metals Database, 2023), which
includes information on each mine’s production, location, and ownership.4 To measure lo-
cal mining impacts, we intersect mine locations with geospatial data on 300x300m land use
classes (Copernicus Land Monitoring Service, 2024), 1x1km economic activity derived from
night-time light intensity (Chen et al., 2022), socioeconomic indicators based on geo-located
Demographic and Health Surveys (Demographic and Health Surveys Program, 2024), 1x1km
population counts (NASA, 2023), violent conflict incidents (Uppsala Conflict Data Program,
2023), and 1x1km particulate matter (PM2.5) air pollution (Shen et al., 2024).> To explore het-
erogeneity in mining impacts based on governance, we further merge mine locations with
subnational (ADM1-level, i.e. state or province) measures of corruption intensity (Crombach
and Smits, 2024) and match mining companies” headquarters locations with country-level in-
dicators of governance quality (World Bank, 2024). We draw annual data on critical mineral
and metal commodity prices from the International Monetary Fund (2024) and USGS (2024).

More detailed descriptions of data sources are provided in Appendix A.1.

3 Descriptive Evidence

Critical mines can be found in countries across all regions and span the global income dis-
tribution. Figure 1 maps the locations of critical mines for commodities of particular global
importance: lithium, nickel, cobalt, rare earth metals (lanthanides, scandium, and yttrium),
graphite, and copper. A map of all critical mine locations in the database is reported in Ap-

pendix Figure Al. Socioeconomic and environmental conditions in the immediate vicinity of

4“Informal mines are missing from this database. Rates of informality vary across commodity and location,
with high-income countries having high rates of formalization and thus fewer missing mines, while low-income
countries have lower rates of formalization and thus more missing data. Informality is particularly high in the
artisanal and small-scale mining (ASM) sector. For cobalt mining in the DRC, the ASM sector accounts for 15-35%
of production, while around 26% of global tantalum production comes from the ASM sector. Approximately 70-
80% of ASM mining is estimated to be informal (IGF, 2022). Since large-scale commercial mines can take years to
come online (even more so in settings with rigorous environmental permitting and regulatory requirements), ASM
provides a margin of rapid supply response to price changes, with minimal environmental or social oversight.
Since commercial mines are typically much larger than ASM mines, the S&P Global database likely captures the
vast majority of global critical mineral and metal output.

SPopulation data are available for 2000, 2005, 2010 and 2015 and interpolated between these years.



critical mines and other mines are summarized in Appendix Table A1.

Figure 1: Critical mine locations (selected commodities)
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Note: Mine locations are drawn from the S&P Global Mining and Metals Database (2023). Year
registered identifies the first year a mine appears in the S&P Global registry. Selected critical com-
modities are reported for brevity. Rare earth elements include lanthanides, scandium, and yttrium,
which are the rare earth elements available in the S&P Global database. A map of all 10,244 critical
mineral and metal mines registered in the database is reported in Appendix Figure Al. Information
on countries with the largest reserves and current production is drawn from the Wilson Center’s
report on Geographic Concentration of Critical Minerals Reserves and Processing (Wilson Center,
2022) and USGS Mineral Commodity Summaries (United States Geological Survey, 2024).

To assess patterns in the growth of critical mines since 2000, Figure 2 reports the number of
mines in 2000 and 2022, disaggregated by region of mine location, country of mine ownership,

and ownership structure (Figure 2A, 2B, and 2C, respectively).® From Figure 24, it is apparent

®Because the exact date of mine opening is not consistently available in the S&P Global database, we rely on the
year a mine first appeared in the database as a proxy. Mine registrations over time are plotted in Appendix Figure



that there has been substantial growth in development of critical mines between 2000 and
2022. While all world regions experienced significant growth, the number of critical mines is
highest in the Asia-Pacific (32.2% of all critical mines in 2022) and the US and Canada (31%).
Latin America and the Caribbean hosts 14.8%, Europe hosts 10.7%, Africa hosts 10.5%, and
the Middle East hosts 0.8%. The Asia-Pacific saw its number of critical mines grow between 2
and 7-fold between 2000-2022, while the US and Canada saw 1.6 to 10-fold growth during this
period, with these ranges reflecting uncertainty in the precise year of mine opening in the S&P
Global database. As shown in Figure 2B, ownership of critical mines is highly concentrated
among companies based in a handful of countries. Canada-based companies held a dominant
ownership stake in 22.9% of all critical mines in 2022. Australian companies held dominant
stakes in 14.5% of critical mines, Chinese companies held dominant stakes in 11.9%, and US
companies held dominant stakes in 11.8%.

Figure 2C disaggregates the number of critical mines in 2000 and 2022 by the income-level
of countries where mines are located (high, middle, and low-income) and ownership struc-
ture (local ownership, foreign ownership, and joint-ventures — where mines are jointly owned
and operated by local and multinational partners). High-income countries have an average
55% local ownership share, meaning over half of all mines are operated by a company head-
quartered in the same country as the mine. In contrast, multinational ownership of mines
predominates in middle-income countries (43.9% local ownership) and low-income countries
(15.2% local ownership). This discrepancy highlights the challenges low and middle-income
countries face in seeking to impose local content requirements to develop their own mining
sectors while maintaining access to the expertise and technology offered by foreign multina-
tionals. Despite some apparent advantages of joint ventures (i.e., combining multinationals’
technology and expertise with domestic firms” local knowledge and connections), joint criti-
cal mining ventures are relatively rare everywhere. Overall, 58.5% of critical mines operating

in 2022 were located in high-income countries, 34.9% in middle-income countries, and 7.0%

A2, indicating that growth in the number of registered mines was relatively consistent for all years between 2000-
2022 (suggesting that registrations reflect real mine openings) with the exception of 2013, when a large number
of mines were registered. This jump likely reflects a large-scale data acquisition by S&P Global around this time,
and mines registered in 2013 may have been present prior to 2000. At one extreme, all mines added to the registry
in 2013 were present prior to 2000, while on the other extreme, all of these additions opened between 2000-2013.
Overlaid blue and gray bars in Figure 2 thus bound the likely number of critical mines present in 2000. Our
empirical strategy leveraging commodity price fluctuations does not rely on the exact year of mine opening,
avoiding measurement error from this uncertainty.



in low-income countries. This distribution contrasts with the common perception of critical

mines predominating in areas with extreme poverty and conflict.

Figure 2: Characteristics of critical mine growth between 2000 and 2022
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Note: A-C show number of mines registered in the S&P Global Mining and Metals Database (2023).
Blue bars represent the number of mines present in 2000, while gray bars represent this number
plus all mines registered in the database in 2013, when S&P likely had a major data acquisition (see
Appendix Figure A2). The difference between blue and gray bars represents bounds set by two
extreme assumptions: (i) that all mines acquired by S&P in 2013 were not present in 2000, versus
(i) that all mines acquired in 2013 were present in 2000. The true number of critical mines in 2000
likely falls in the middle of this range. High, middle, and low-income country definitions follow
the World Bank classification. Mines are classified as local or multinational based on the headquar-
ters location of the largest operating company. Joint ventures indicate mines that are jointly owned
by both local and multinational firms. Concentration levels for each critical commodity are calcu-
lated using the Herfindahl-Hirschman Index (HHI), which is calculated by squaring the percentage
market share of each country and summing the squared values. HHIs can range from near 0 in a per-
fectly competitive market with many small producers, to 10,000 in the case of a complete monopoly
with only one producer. HHIs are reported for both production (measuring spatial concentration of
mines by country) and asset ownership (measuring concentration of mine ownership by operating
companies’ headquarters country). HHI values reflect data available in S&P Global and may not
capture all mines in the world, including any mines registered after 2022. Non-critical commodities
(included for comparison) are denoted with an asterisk.

Importer countries” focus on onshoring and diversification of critical supply chains has

been motivated by high levels of concentration in critical mineral and metal extraction and

10



processing (Fleck et al., 2024). In Figure 2D, the degree of market concentration for each
critical commodity is measured with Herfindahl-Hirschman Indexes (HHIs) at the country-
level, based on (i) the country where mines are located, and (ii) the country where operating
companies are based.” Selected non-critical materials (iron ore, coal, and gold) are also plotted
for comparison. Most critical minerals and metals exhibit high levels of market concentration
when measured by both production location and ownership, though some, such as bauxite,
manganese, copper, and tin, have competitive market structures.

Finally, Figure A3 plots distributions of socioeconomic development indicators within
20km of critical mines and other mines relative to distributions for the full sample of Demo-
graphic and Health Surveys (averaged across all survey waves between 2000-2021). House-
hold wealth around critical mines is slightly lower than wealth levels for the full DHS sample,
with areas around critical mines exhibiting a mean wealth index of 2.52 relative to 2.74 for the
full sample (t-test p = 0.00). Despite slightly lower wealth, education and literacy levels are
higher around critical mines, at 7.31 years relative to 6.19 years for the full DHS sample (t-test
p = 0.00) and 62% literacy relative to 52% literacy (t-test p = 0.00). Child mortality rates
around critical mines are in line with the full DHS sample, with on average 19% of house-
holds reporting a child death (t-test p = 0.80), while birth weights are higher. Finally, in line
with slightly lower wealth levels, households near critical mines have slightly lower access to

improved sanitation, at 48% relative to 55% in the full sample (t-test p = 0.00).

4 Empirical Strategy

Our empirical strategy leverages variations in global mineral and metal prices to iden-
tify local effects of price shocks around mines. In line with rising demand, critical mineral
and metal prices have generally experienced substantial growth between 2000 and 2022, with
some minerals or metals exhibiting 200-750% real price increases. However, this growth has
also been accompanied by substantial volatility—in some cases, commodities have experi-

enced 80% price crashes relative to year 2000 values. Commodity price series are plotted in

’The HHI is computed by squaring the percentage market share of each country and summing those squared
values. Resulting HHI values range from near zero in commodities where many countries participate in the
mining process, to 10,000 in the extreme case of just one country hosting or owning all the mines of a particular
commodity. Typically, HHI values above 2000 are considered indicative of highly concentrated markets.
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Figure 3. In general, prices for battery inputs rose sharply between 2002 and 2012 and again
from 2020 to 2022. Prices for renewable energy inputs have increased by approximately 100%
in real terms since 2000, with the exception of aluminum. Lithium, a key input into electric
vehicle batteries, has seen a price collapse as increases in supply have outstripped demand,

including large quantities from Chile and Argentina.
Figure 3: Price indices of key critical minerals over time, by usage type
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Note: Nominal commodity prices are indexed to base year 2000 = 100 and deflated using the World
Bank’s world GDP deflator, thus reflecting percentage changes in real prices since 2000. Key com-
modities are organized by their typical sector of usage. Price data are drawn from International
Monetary Fund (2024) and USGS (2024).

Such fluctuations in global commodity prices are exogenous to local characteristics, trends,
and mining decisions because each individual mine is a price-taker globally. Positive price
shocks increase mining profits (Knop and Vespignani, 2014), generating more local economic
surplus and incentivizing greater production (Stuermer, 2022). We leverage these character-
istics of commodity prices to identify the impact the current critical mining boom on local
mining communities. This identification strategy follows an extensive literature on mining
impacts (Cust and Poelhekke, 2015; Blair et al., 2021). For mine i producing commodity m

located in country c and observed at time ¢, we estimate:

Yimet = 0+ PLOg(Pm,e—1) + Om + Vet + Xipurt + Eimet Q)
Where vy;,c+ is the outcome of interest, p,,, ;1 is the one-year lag of the commodity price for
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m, §,, is a commodity fixed effect, and 7y is a country-by-year effect. Controls in Xj;,.; include
the mine latitude, the mine’s year of opening (proxied by registration year), and several mine
ownership characteristics observed in the initial year (multinational ownership, size of the
operating firm, the HHI (concentration) of ownership shares, and the log GDP per capita of
the country where the controlling operator is headquartered). These characteristics are inter-
acted with year dummies to allow for differential trends in the outcome based on initial mine
characteristics. Standard errors are clustered at the mine level to allow for serial correlation
within panel units. Throughout, the analysis maintains the sample restriction that the mining
site is “registered,” defined as having submitted ownership data to the S&P Global Mining
and Metals Database (2023).

Yimet captures two classes of outcomes—environmental and socioeconomic. To investigate
environmental effects, forest cover is measured as the share of pixels within five kilometers
of the mine that are classified as tree cover by the Copernicus land cover classification al-
gorithm. An additional sample restriction for the forest cover regressions requires that the
mine had greater than 20% forest cover in its initial year, and that it is located in the tropical
rainforest belt of countries.® Results are robust to loosening these restrictions. The second
environmental outcome is the log of the ambient air concentration of PM2.5 within 25 kilo-
meters of the mine location, measured in pug/m®. A larger radius is used for PM2.5 than for
deforestation as air pollution is likely to travel from its source, whereas deforestation effects
should be concentrated around mining infrastructure (Girard et al., 2022). The second set of
outcomes is socioeconomic. Local GDP is measured as the log of the total sum of economic ac-
tivity (GDP), as predicted by satellite night lights, within 25 kilometers of the mine location.
Population is measured the same way. Resource-related conflict is defined as an indicator
variable for whether the mine has experienced any conflict within 25 kilometers in a given
mine-year. Note, again, the relatively large radius of 25 kilometers for these socioeconomic
outcomes. Effects should be concentrated not only in the direct location of the mine, but also

in nearby population centers. Results are robust to variations in distance radii.

8These are: Angola, Argentina, Australia, Bolivia, Brazil, Burundi, Cambodia, Cameroon, Colombia, Cote
d’Ivoire, DRC, Dominican Republic, Ecuador, Equatorial Guinea, Fiji, Gabon, Ghana, Guatemala, Guinea,
Guyana, Honduras, India, Indonesia, Jamaica, Laos, Madagascar, Malaysia, Mexico, Mozambique, Myanmar,
Nepal, Nicaragua, Nigeria, Panama, Papua New Guinea, Paraguay, Peru, Philippines, Republic of Congo, Sierra
Leone, Solomon Islands, Sri Lanka, Suriname, Thailand, Togo, Uganda, Vanuatu, Venezuela, Vietnam, Zambia
(Food and Agriculture Organization of the United Nations, 2003).
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A key consideration of the analysis is whether the impacts of price shocks vary by local
governance conditions. To test for these heterogeneous effects, the original regression in (1) is

augmented with an interaction term as follows:

yimct =a+ ,Bl log(pm,t—l) X Zicmt + ,32 log(Pm,t—l) + ,B3Zicmt + 5m + Yet + Xgmctll + €imct (2)

Where Z.,; is the interaction variable. The analysis considers two sources of heterogene-
ity. First, the subnational corruption index (SCI) measures local governance conditions under
which the mine’s owners operate. Second, the quality of governance that the firms operat-
ing the asset are exposed to—and possibly constrained by—is captured with the World Bank
Worldwide Governance Indicators (WGI) score of the largest operator’s home country, aver-
aged across all sub-indicators.

The first identifying assumption in the analysis is that price shocks are exogenous to the
decisions made at the mine-level. This assumption is plausible given that no individual mine
is likely to be a large enough player in the global market to manipulate prices directly. While
this is a reasonable assumption, it is also true that countries may have large market shares
in specific commodities, and governments may be able to influence production decisions
across mines in that commodity (for example, if a large share of production is nationalized).
Country-year fixed effects help to rule out this source of endogeneity by holding time-varying
country-level natural resource policies fixed. The second identifying assumption is that of no
simultaneous shocks. If other macroeconomic trends are correlated with price shocks, this
might confound the estimates. Again, the fixed effects help to satisfy identification assump-
tions. The inclusion of country-year trends—restricting comparisons across mines to within a
given country-year—helps to control for the country-specific effects of broad macroeconomic
shocks. Commodity fixed effects absorb time-invariant differences in production character-
istics and local impacts by commodity. Finally, baseline mine characteristics interacted with

time trends reduce the scope for omitted variable bias at the mine level.
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5 Results

Regression analyses in Table 1 reveal substantial negative environmental externalities of

critical mining. The regression estimates in column (1) show a clear negative relationship

after controlling for fixed effects and interacted mine covariates: as prices rise, forest cover

falls substantially. A 10% increase in critical mineral prices reduces forest cover by 0.3 p.p.

Appendix Figure A4A visualizes the linear fit of the relationship between mineral prices and

forest cover around critical mines using binned scatter plots. For critical minerals, the cumu-

lative 102% increase in average commodity prices from 2000-2022 shown in Figure 3 accounts

for a 3.6% loss in baseline pre-mining forest cover in tropical areas around critical mines over

this period.9 The opposite trend is observed for air pollution in column (2), where critical

minerals prices are not significantly associated with PM2.5 emissions.

Table 1: Impact of price shocks on local environmental and socioeconomic outcomes

Outcome Forest cover LogPM2.5 LogGDP LogPop Conflict
) (2) ) (4) ©)
Log price, t — 1 -3.261* -0.001 0.086**  0.260**  -0.002
(1.640) (0.008) (0.024) (0.110)  (0.002)
Observations 15471 88441 69829 16506 89159
R-squared 0.229 0.843 0.587 0.646 0.283
Commodity FE Yes Yes Yes Yes Yes
Year x Country FE Yes Yes Yes Yes Yes
Year x Controls Yes Yes Yes Yes Yes

Note: Standard errors, in parentheses, are clustered at the mine level. Forest cover is measured as the
share of pixels within 5 kilometers of the mine that are classified as tree cover. Forest cover sample
is all countries with tropical rainforest (see Footnote 8) and mines with baseline forest cover greater
than 20%. PM2.5 is measured as log of the total concentration of fine particulate matter, in yg/m3,
within 25 kilometers of the mine. Local GDP is measured as the log of total night lights-predicted
GDP, in USD, within 25 kilometers of the mine, from Chen et al. (2022). Population is measured as log
of the total population living within 25 kilometers of the mine, derived from GPW estimates. Conflict
is an indicator variable if there was any conflict within 25 kilometers if the mine in a given mine-year.
Controls are initial MNC ownership, shareholder HHI, home-country GDP per capita, and firm size,
as well as mine age and latitude. Critical minerals definition can be found in Footnote 1. Sample is
all registered mine-years from 2000-2022 for which the outcome variable and prices are non-missing.

#**+p < 0.01,*p <0.05*p <0.1.

Despite the negative impacts of mining on forest cover, the socioeconomic effects of critical

9 Appendix Figure A5 shows estimates of forest loss by commodity. The largest effects of prices on forest
cover all come from critical minerals — zircon, tin, cobalt, vanadium, and aluminum — though commodity-specific
estimates are generally imprecise due to limited variation.
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mineral booms are unambiguously positive on average. Column (3) shows the relationship
between commodity prices and local economic activity. A positive 10% price shock increases
local night lights-predicted GDP within 25 kilometers of a critical mine by 0.9%, as shown
in Appendix Figure A4c. For critical minerals, the cumulative increase in average commod-
ity prices from 2000-2022 shown in Figure 3 accounts for a 6% increase in overall economic
activity around critical mines over this period. This increase in output is accompanied by sub-
stantial population growth, in column (4). The same 10% increase in critical mineral prices
increases local population by 2.6% (Appendix Figure A4D). This effect is likely due to labor
in-migration and is consistent with evidence from the United States on the employment ef-
fects of local oil and gas booms (Allcott and Keniston, 2018).

The effect of resource booms on social conflict is theoretically ambiguous. The literature
has generally identified two opposite-signed effects (Dube and Vargas, 2013; Blair et al., 2021).
The rapacity effect suggests that as commodity prices rise, the value of the spoils of conflict
also rises, incentivizing greater fighting over control of resource rents. At the same time, the
opportunity cost hypothesis suggests that as prices rise, accompanying local economic ben-
efits render the opportunity cost of fighting prohibitively high, reducing the pool of recruits
for armed groups. Table 1, column (5) tests the relationship between commodity prices and
violent conflict around critical mines. Possibly because of offsetting rapacity and opportunity
cost effects, there is no significant association between the probability of conflict and critical

mineral prices, consistent with the results of Bazzi and Blattman (2014).

5.1 Heterogeneity by Local and Investor Governance

The results in Table 1 show that critical mining presents a clear tradeoff for mining com-
munities: rising economic activity at the cost of greater deforestation. However, there is likely
to be substantial heterogeneity in these average effects. In advanced economies, the marginal
economic benefits of a mine are likely to be smaller, given more economic activity ex-ante. At
the same time, the environmental effects will also be muted in hihg-income settings because
the worst environmental excesses of producing firms are curbed by well-enforced regulation.
As such, the environment-growth tradeoff should emerge most starkly in the worst governed
places. To test this hypothesis, interaction terms between price shocks and local governance

quality — measured by the Subnational Corruption Index (SCI) (Crombach and Smits, 2024) -
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are added to the main regression specification.

Figure 4: Local impacts of mineral price shocks by corruption levels

A. Forest cover (%) B. Air Pollution (Log PM2.5)
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Note: Plots present predicted effects of a 10% price shock from the estimation of equation (2) using
OLS, residualizing commodity fixed effects, country-by-year effects, and controls for initial MNC
ownership, shareholder HHI, home-country GDP per capita, firm size, mine age, and latitude, in-
teracted with year indicators. The subnational corruption index (SCI) is defined at the ADM1 level,
with larger numbers indicating less corruption. Forest cover is measured as the share of pixels
within 5 kilometers of the mine that are classified as tree cover. Forest cover sample is all coun-
tries with tropical rainforest and mines with baseline forest cover greater than 20%. Local GDP
is measured as the log of total night lights-predicted GDP, in USD, within 25 kilometers of the
mine. Conflict is an indicator variable if there was any conflict within 25 kilometers of the mine in
a given mine-year. Sample is all registered mine-years from 2000-2022 for which the outcome vari-
able is non-missing. PM2.5 is measured as log of the total concentration of fine particulate matter,
in ug/m3, within 25 kilometers of the mine. Sample is all registered mine-years from 2000-2022 for
which the outcome variable and SCI are non-missing.

Figure 4 plots variation in the predicted impact of a mineral price shock along the distribu-
tion of subnational corruption, using estimates from the linear interaction model in Appendix
Table A2. For critical mines, the negative average effects of price increases on forest cover are
largest in the worst-governed subnational regions. The interaction model predicts that in

regions with an SCI of 20 — equivalent to the worst-governed regions of the Democratic Re-
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public of Congo — a 10% increase in critical mineral prices is predicted to reduce forest cover
by 2 p.p., four times more than the average effect. As local corruption levels improve, this
effect attenuates, such that when the SCI reaches 80 — equivalent to the best-governed regions
of Western Europe — the effect of price increases on deforestation is statistically insignificant.

Similar patterns are observed for several other outcomes. For example, local economic
impacts of mining are also concentrated primarily in the worst-governed places. In the linear
model, the predicted elasticity of local GDP to critical mineral prices is 0.38 for the worst-
governed regions and not significantly different from zero for the best-governed regions (es-
timates in Appendix Table A2). Air pollution follows a similar pattern, though the effects are
not significant anywhere along the corruption distribution. Finally, consistent with the eco-
nomic boom induced by rising prices, population growth responds most strongly to prices in
the most corrupt regions.!’

Firm characteristics also play an important role in determining the costs and benefits of
critical mining. Firms based in weakly governed places may have a comparative advantage
in operating in politically challenging markets (Rexer, 2024), or be better positioned to take
advantage of institutional voids due to the absence of home-country environmental regula-
tions and anti-corruption statutes. As shown in Appendix Figure A6, there is a positive cor-
relation between subnational corruption around mine locations and weak governance in the
headquarters locations of multinational mine operators. This indicates positive-assortative
matching between mining locations and mining companies along the dimension of institu-
tional quality.

One might therefore expect a greater supply response—and consequently larger local
impacts—around mines where the operating firm is based in a country with weak gover-
nance. This hypothesis is tested by interacting the price shock with a measure of home-
country corruption from the Worldwide Governance Indicators (World Bank, 2024), where
“home-countries” are defined as the country where the mine’s operating company is head-
quartered. The results, plotted with the linear interaction in Figure 5, broadly mirror the
effect of host-country corruption. Mining assets controlled by firms based in states in the 10th

percentile of the governance distribution exhibit deforestation responses to critical mineral

10We omit results on conflict, since as Table 1 shows, there is essentially no relationship with prices. The effect
remains near-zero across the governance distribution.
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Figure 5: Local impacts of mineral price shocks by investor country governance

A. Forest cover (%) B. Air Pollution (Log PM2.5)
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Note: Plots present predicted effects of a 10% price shock from the estimation of equation (2) using
OLS, residualizing commodity fixed effects, country-by-year effects, and controls for initial MNC
ownership, shareholder HHI, home-country GDP per capita, firm size, mine age, and latitude, inter-
acted with year indicators. Investor governance index is the country-level average of all Worldwide
Governance Indicators (WGI) sub-indices for the country in which the largest mine shareholder is
headquartered, with larger numbers indicating better governance. Forest cover is measured as the
share of pixels within 5 kilometers of the mine that are classified as tree cover. Forest cover sample
is all countries with tropical rainforest and mines with baseline forest cover greater than 20%. Local
GDP is measured as the log of total night lights-predicted GDP, in USD, within 25 kilometers of the
mine. Conflict is an indicator variable if there was any conflict within 25 kilometers of the mine in
a given mine-year. Sample is all registered mine-years from 2000-2022 for which the outcome vari-
able is non-missing. PM2.5 is measured as log of the total concentration of fine particulate matter,
in pg/m3, within 25 kilometers of the mine. Sample is all registered mine-years from 2000-2022 for
which the outcome variable and SCI are non-missing.

price shocks that are more than twice as large as the average effect in Table 1 (linear inter-
action model estimates are in Appendix Table A3). The local economic benefits of critical
mining are 30% larger for mines operated by firms based in countries in the bottom 10% of
the governance distribution relative to the average effect, though the interaction term in this

model is not statistically significant (Appendix Table A3). In general, the interaction effects
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are stronger and more significant for local governance than home-country governance.

5.2 Mapping Critical Impacts

To characterize the spatial distribution of local impacts from critical commodity price
shocks, we estimate mine-specific slopes in a two-step procedure. First, for each outcome
(log night-lights-predicted GDP within 25km or forest cover share within 5km) we partial
out fixed effects and controls by projecting both the outcome and the one-year-lagged log
commodity price on mine fixed effects, commodity fixed effects, and country-by-year fixed
effects, together with year dummies interacted with baseline mine characteristics (including
initial mine attributes, first recorded year, and latitude). Second, for each mine with sufficient
within-mine price variation, we regress the residualized outcome on the residualized price to
obtain a mine-level coefficient ;. By construction, 3; for GDP is an elasticity of local economic
activity with respect to price, whereas j3; for forest cover is a semi-elasticity (percentage-point
change in forest cover per log-point change in price).

Results from this procedure are mapped in Figure 6. In line with our main empirical
results, Figure 6A indicates that mines with the largest economic responsiveness to critical
commodity price increases are most concentrated in low and middle-income countries—with
hotspots in the South American Andean region, Central-Southern Africa, and Western Aus-
tralia (a high-income exception) — though there is substantial variation and dispersion in eco-
nomic responsiveness across the entire map. Figure 6B shows that forest loss associated with
critical commodity price increases is even more clustered — in the northern Andes and Central
America, Central-Southern Africa, the Middle East, and Southeast Asia. Forest loss hotspots
correspond with areas that also show strong economic responsiveness to price shocks. It is
important to note that mine operator institutional quality cuts across regions, introducing

additional heterogeneity.

5.3 Welfare effects

The results in Figure A4 suggest that local economic activity rises with critical commodity
prices, but how much do local communities truly benefit? Price booms may not translate into

local welfare gains for several reasons. First, there are legitimate concerns about using night
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Figure 6: Global distribution of critical mining impacts on economic activity and forest loss
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Notes: Each point represents a critical mine location, colored by mine-specific price responsive-
ness estimated in a two-step, within-mine procedure: first, we residualize each outcome and the
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effects as well as year-interacted baseline mine characteristics; we then regress the residualized out-
come on the residualized price separately for each mine to obtain a slope ;. Panel A (GDP) colors

mines with BIGDP > 0, where ﬁiGDP = %.
bar is on a log;, scale for contrast, values are trimmed to the 2nd-98th percentiles to facilitate visu-
alization, and tick labels show the original (unlogged) units. Panel B (forest loss) colors mines with
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loss response (‘BforeSt > () are gray. Colors map to log(1+ |/§f°r95t|) ; limits are set to the 2nd-98th
percentiles. Legend tick labels report raw percentage—point magnitudes. Mines with insufficient

within-mine price variation or very short panels are excluded.

Non-positive sites are shown in gray. The color
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lights to predict local economic activity, particularly since rising luminosity in the area around
mines may reflect new mining infrastructure and operations, rather than meaningful positive
spillovers to local markets. Second, even if night lights accurately measure economic activity,
given the capital-intensity of most mining operations, local gains may be captured primarily
by a small group of highly skilled or foreign expatriate workers or local elites.

To address the question of local welfare spillovers, we use several survey-based indica-
tors of well-being from the Demographic and Health Surveys (DHS), measured as survey-
weighted averages within 20 kilometers of a given mine. As our measure of household well-
being, we primarily consider the DHS wealth index, as well as auxiliary welfare indicators

such as literacy, child mortality, and access to improved sanitation.

Figure 7: Measurement validation of satellite night lights-predicted GDP
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Note: Plots present partial correlations between local GDP and DHS outcomes at the mine level,
controlling for country-by-year effects. Local GDP is measured as the log of total night lights-
predicted GDP, in USD, within 25 kilometers of the mine. Wealth index is measured as the standard-
ized DHS asset index. Literacy is the share of the adult population that is literate. Child mortality is
the share of births in which the child died before their 5th birthday. Improved sanitation measures
the share of households in the DHS sample with. All mine-level DHS estimates use survey weights
and are defined within 20 kilometers of the mine. Sample is all registered mine-years from 2000-
2019 for which DHS data is available.

Night lights-based economic activity around mines is significantly related to these wel-
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fare measures. Figure 7 plots the relationship between night lights-predicted GDP and local
welfare outcomes, after controlling for country-by-year fixed effects. Across all outcomes,
there is a strong correlation between night lights-predicted economic activity and average
living standards. Regression estimates in Appendix Table A13 confirm that these associations
are statistically significant. The results suggest that night lights are a good proxy for overall
economic development.

However, even if night lights are a plausible measure of local economic activity, this does
not necessarily imply that the spillovers from mining activity meaningfully raise local living
standards. To test this proposition, we re-estimate our main price regression equation on
the subsample of mines for which DHS data is available, using the DHS wealth index as the
outcome. Table 2 shows the regression estimates. Commodity price shocks are significantly
associated with local wealth indices as measured by the Demographic and Health Surveys
(DHS). This result is robust to various combinations of controls and fixed effects. In columns
(1)-(3), a 10% increase in prices is associated with a 1-1.6% increase in local household wealth,
relative to the sample mean. These results hold except in the most stringent specification
(column 4), which includes country-by-year fixed effects. However, this estimate is likely
to be unreliable because of limited within-unit variation: there are only 8 unique mines per

country-year in the data after all the sample restrictions are imposed.

Table 2: Impact of price shocks on DHS wealth index

Outcome Wealth index Non-agricultural employment
1) 2) 3) (4) ) (6) ) (8)
Log price, t — 1 0.455*** 0.324** 0.269** 0.037  0.026 0.095** 0.124***  0.038
(0.088)  (0.146) (0.130) (0.161) (0.024) (0.043) (0.044) (0.045)
Observations 1222 1222 1222 1222 1219 1219 1219 1219
R-squared 0.237 0306 0411 0466 0.100  0.212 0.374 0.515
Controls Yes Yes Yes Yes Yes Yes Yes Yes
Commodity FE Yes Yes Yes Yes Yes Yes Yes Yes
Year FE No Yes Yes No No Yes Yes No
Country FE No No Yes No No No Yes No
Country x Year FE No No No Yes No No No Yes

Note: Standard errors, in parentheses, are clustered at the mine level. Dependent variable is the DHS Wealth Index,
measured as the standardized DHS asset index in (1)-(4) or the share of employed adults in non-agricultural occupations
in (5)-(8). All mine-level DHS estimates use survey weights and are defined within 20 kilometers of the mine. Critical
minerals definition can be found in Appendix A.1. Sample is all registered mine-years from 2000-2019 for which DHS
data is available. *** p < 0.01, ** p < 0.05,* p < 0.1.
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Employment shifts represent a key mechanism that might drive broad economic spillovers
from critical mining booms. Mining activity generates labor demand both directly, and indi-
rectly through increased demand for inputs, as well as local goods and services (Allcott and
Keniston, 2018). As such, we might expect both rising wages as well as a shift in employment
activity away from low-productivity agriculture to the types of goods and services demanded
by firms and workers in the mining sector. Though we lack geographically disaggregated
wage data, we can test for shifts in employment composition. Columns (5)-(8) of Table 2 esti-
mate the impact of commodity prices on the employment share of the non-agricultural sector
in the DHS sample. The results indicate anywhere between a 0.3 -1.2 p.p. (0.3-1.6% of the
sample mean) increase in the share of workers employed outside agriculture due to a 10%
increase in prices. These estimates suggest mining booms can boost off-farm labor demand,

triggering structural change and driving increasing economic activity and well-being.

5.4 Robustness Checks and Extensions

Production effects: There are two mechanisms by which price shocks affect environmental
and socioeconomic outcomes. First, price shocks increase the value of production at a fixed
level of output. This could affect conflict by raising the value of attacking mining sites, or
increase local wages through rent sharing. Second, higher prices also incentivize greater pro-
duction — both on the extensive and intensive margins — leading to greater deforestation and
increased PM2.5. Socioeconmic impacts likely operate via both mechanisms, while environ-
mental consequences depend primarily on the expansion of output. It is therefore important
to verify whether price shocks increase output. Appendix Table A4 estimates the elasticity of
mining output to prices. Estimates reveal a small but meaningful and statistically significant
elasticity on both the intensive and extensive margins: a 10% increase in commodity prices is
associated with a 0.4% increase in output and a 0.32 percentage point (2.5%) increase in the
probability of production. These effects are larger for longer lags of prices, suggesting that
tirms face adjustment costs to ramping up production. The fact that extensive margin effects
are larger than intensive margin may also explain why the effects of mineral price shocks are

more pronounced for deforestation than air pollution.

Outcome radius: Results might also be sensitive to the geographic radius around the mine
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used to define outcomes. This is particularly important for local economic activity (Appendix
Table A5) and air pollution (Appendix Table A6), for which impacts might reasonably be ex-
pected to materialize further out from the precise location of the mine. The results for local
economic activity and air pollution for different distance rings (0-5, 5-10, 10-15, 15-20, and

20-25) are broadly similar to the main regression results in Appendix Table 1.

Baseline forest cover: Main specifications analyzing forest cover throughout this study re-
strict the sample to only mines located in tropical forests with a baseline forest cover of 20%
or more. Appendix Table A7 investigates the sensitivity of the results to this restriction. For
critical minerals, results remain negative and significant for thresholds of 0, 20, and 40% and
in both the sample of only tropical forests and all forests — though effects are largest at the

20% threshold.

Shock definition: The results are also robust to many different definitions of the price shock,
including additional lags (Appendix Table A8) and leads (Appendix Table A9) of prices. Ap-
pendix Table A10 defines positive price shocks as years (or consecutive three-year periods) in
which commodity prices are more than 0.5 or 1 standard deviations above the average for the

sample period. The results remain broadly unchanged.

Placebo test: Concerns about omitted variables may remain even after conditioning on fixed
effects. These concerns are allayed with a placebo test that estimates the main models in the
period before a mine opened. There is no evidence of meaningful effects of price shocks on

GDP or forest cover in this pre-opening period (Appendix Table A11).

Sample selection: In the data, it is only possible to observe the year in which a mine registered
in S&P, but not it’s precise activity status over time. The main sample throughout this paper
takes all mines in all years after their first year of registration. This may create concerns that
inactive mines contaminate the main sample. Appendix Table A12 subsets the sample to only

mines that were listed as active as of 2022.!! The main results remain broadly unchanged

HNote that this restriction may introduce other biases, because i) mine activity status is plausibly an outcome
of prices, and ii) activity status is not time varying, so there is a risk of excluding mines that were active during
the earlier years in the sample, but not in 2022.
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in magnitudes, though the coefficient on deforestation for critical minerals loses significance

because of the smaller sample.

6 Discussion and Policy Implications

Our results reveal that mines located in high-corruption regions and operated by firms
based in weak-governance jurisdictions exhibit the strongest economic impacts and steepest
declines in forest cover during commodity price booms. In line with “greasing-the-wheels”
corruption mechanisms, this pattern suggests that when rules are pliable and enforcement is
weak, mining companies can accelerate permitting, development, and production quickly in
response to price shocks, amplifying both local economic activity and environmental damage.

Given the central role of critical minerals in the global energy transition, “greasing the
wheels” corruption may increase global welfare by reducing barriers to production, allowing
critical mineral supply to respond more rapidly to demand shocks and attenuating global
price volatility in critical sectors. However, the presence of environmental externalities sug-
gests highly unequal distributional effects: the poorest, weakest states may capture economic
benefits of critical mining but also bear the environmental costs of the clean energy transition.
Even worse, the volatile boom-bust nature of extractive sectors suggests these short-term eco-
nomic gains may not translate into long-run development—especially when weighed against
largely irreversible forest loss (Luckeneder et al., 2025; van der Ploeg and Poelhekke, 2009).

Our findings yield several policy implications. First, in high-income countries—where a
large share of the social gains from critical minerals accrue downstream of extraction—policymakers
should accelerate permitting and production timelines, adopt precision mining practices that
minimize environmental impacts, and prioritize the least environmentally vulnerable sites,
even if doing so reduces local economic spillovers. Fiscal transfers and place-based policies
can partly offset such trade-offs. Because so many recent critical mining projects are con-
centrated in high-income settings, fast-tracking sustainable extraction in these jurisdictions is
likely to have disproportionate effects on global supply while also addressing concerns over
de-risking and on-shoring of supply chains (Arezki and van der Ploeg, 2023).

In low and middle-income countries—where generating local economic impacts from extrac-

tion is a higher priority—policymakers should focus on converting short-run economic gains
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from mining booms into sustainable long-run development. How to do so effectively re-
mains an active and high-priority area for research. Outstanding questions include how best
to collect and allocate mining revenues between infrastructure, public goods provision, envi-
ronmental conservation, or poverty alleviation (van Krevel, 2025; Murillo and Sardon, 2024),
and how to design local content and local ownership policies to promote human capital accu-
mulation, development of upstream and downstream industries, and sustainable extraction
(Chang, 2025; Rexer, 2024; Cust and Zeufack, 2023).

Finally, traceability and sustainable supply chain initiatives can be used to align firms’ pri-
vate incentives with environmental and social performance (Lambin et al., 2018). The same
tools employed in our analysis—tracking mine ownership and measuring impacts around
each mine—can inform procurement and licensing decisions based on observed environmen-
tal and socioeconomic outcomes. Such practices raise the cost of environmentally damaging
“greasing-the-wheels” strategies and increase returns from sustainable extraction. Home-
country regulations can bind firms to higher standards abroad, and mineral importers can
leverage their purchasing power to encourage compliance, especially as improved monitor-
ing based on remote sensing data reduces reliance on local enforcement capacity (Mendonca
Severiano et al., 2024).

This study has several limitations. First, governance is inherently multidimensional and
difficult to measure. Our use of the Subnational Corruption Index and Worldwide Gover-
nance Indicators provides global coverage but inevitably embeds measurement error and
conceptual choices about what constitutes “good governance.” Second, while remote-sensing
datasets enable global-scale analyses, they do not capture all impact channels (e.g., ground-
water depletion, biodiversity loss, or social or cultural harms). Thus, our global estimates
should be seen as complementary to detailed country or site studies. Third, mine start-up
dates in the S&P database are imperfect, leading us to analyze within-mine responses to com-
modity price movements rather than using event study designs around mine openings. Fi-
nally, our empirical strategy measures short-to-medium term impacts of commodity price
shocks, rather than long-run impacts of exposure to mining. Credibly identifying long-run
impacts would require quasi-experimental variation in mine placement or credible counter-
factual locations, which is challenging at a global scale. Each of these limitations suggests

avenues for future work.
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ONLINE APPENDIX

A Appendix

A.1 Data Description

Mine Locations and Characteristics: The primary data source for this paper is the S&P Global
Mining and Metals Database (2023), covering nearly all (35,567) commercial mines in the
world annually between 2000-2022. Information reported in this database includes mine lo-
cations, primary commodity produced, and production volume. Production data are only
available for 6,170 mines covering 122 countries (46,252 mine-years). Primary commodities
produced are used to classify mines as “critical” or “non-critical.” Critical minerals and met-
als include alumina, antimony, bauxite, chromite, chromium, cobalt, copper, graphite, heavy
mineral sands, ilmenite, lanthanides, lithium, manganese, molybdenum, nickel, niobium, pal-
ladium, platinum, rutile, scandium, tantalum, tin, titanium, tungsten, vanadium, yttrium,
zinc, and zircon following classifications discussed in (IEA, 2022) and (Cossins-Smith, 2023).
There are a very small number of ferrochrome and ferronickel mines (23 each) in the dataset,
which we classify as non-critical. Changing the classification of these commodities to critical

does not alter the results.

Mine Ownership and Company Characteristics: Time-varying ownership data are available
for 96.5% of mines in the S&P Global Mining and Metals Database (2023), including each
firms” percentage participation share in each mine, firm names and ID numbers, and firms’
country and city headquarters for 16,805 unique mining firms. Firm ownership structures are
reconstructed up to one level above immediate mine operators, thus identifying all parent

companies (and their characteristics) for wholly or partially owned subsidiary firms.

Economic Activity: Annual 1x1km gridded GDP levels inferred from night-time light inten-
sity are from Chen et al. (2022). Average GDP levels within 5, 10, 15, 20, and 25km of mine
locations are measured each year to assess the level of economic activity. GDP is measured in

millions of real USD.
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Demographic and Health Surveys: To validate the relationship between GDP from night
lights and household-level socioeconomic development outcomes, as well as to assess socioe-
conomic impacts around mine locations, mine locations are intersected with the universe of
Demographic and Health Surveys (DHS) collected between 2000 and 2022 within 20km of
those locations (Demographic and Health Surveys Program, 2024). Overall, we are able to
match just 1,191 critical mines, or 12% of the total sample. DHS surveys covered over 90 low
and middle-income countries during this period. DHS data were shared with the authors by

the World Bank Planet Vice Presidency Unit.

Population: Population comes from satellite-derived data from NASA’s Gridded Population
of the World (Version 4) database, which provides 1x1km population estimates for the years
2000, 2005, 2010, and 2015 (NASA, 2023). Population levels are interpolated between these

years.

Land Use: Measurement of land use change draws on satellite-derived data from the Coperni-
cus Land Monitoring Service (2024), an initiative of the European Union, which uses satellite
images and machine learning algorithms to predict global, gridded land cover categories at
300x300m resolution across 23 land-use classes from 1992-2023 (Copernicus Land Monitoring
Service, 2024). We aggregate natural vegetation classes into our primary land-use outcome

(tree cover).

Conflict: Data on conflict are drawn from the Uppsala Conflict Data Program (UCDP), which
compiles the universe of geolocated conflict events between 1975-2023 (Uppsala Conflict Data
Program, 2023). Each event includes information on the parties involved and the number of
civilian deaths. The variables of interest are the sum of total conflict events and conflict-
related civilian deaths registered each year within 5, 10, 15, 20, and 25km of each mine loca-

tion.

Air Pollution: Concentrations of fine particulate matter air pollution (PM2.5) can be inferred
from satellite data. Satellite-predicted data on hyper-local PM2.5 concentrations come from

Shen et al. (2024). These authors provide a global, gridded annual panel dataset at the 1x1km
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resolution covering 1998-2022.

Commodity Prices: Annual data are commodity prices for minerals and metals are drawn
from the International Monetary Fund’s Primary Commodity Prices Database (International
Monetary Fund, 2024) and the United States Geological Survey’s Mineral commodity sum-
maries (USGS, 2024). Prices are deflated to constant 2010 values using the World Bank GDP

deflator.

Subnational Corruption Index: Subnational data on annual grand and petty corruption in
1,473 regions (ADM1-level) of 178 countries between 1995-2022 are drawn from the Subna-
tional Corruption Database, developed by Crombach and Smits (2024) and made available
by the Global Data Lab in the Nijmegen School of Management of Radboud University. This
dataset compiles data from 807 surveys covering 1,326,656 respondents to develop a compre-
hensive corruption measure for each region, as well as separate measures for grand and petty

corruption.

Worldwide Governance Indicators: The World Bank combines data from over thirty sources
into annual measures of governance along the dimensions of voice and accountability, regula-
tory quality, political stability, rule of law, government effectiveness, and control of corruption
(World Bank, 2024). We compute the average of these measures at baseline (2000) to create an

aggregate governance index measure for each country.
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A.2 Appendix Figures

Figure Al: Critical Mines Around the World (All Critical Minerals and Metals)
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Note: Map shows GPS coordinate locations of all registered commercial critical mines from 2000-
2022. Critical minerals definition can be found in Appendix A.1. Map locations are drawn from the

S&P Global Mining and Metals Database (2023).
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Figure A2: Cumulative Number of Mines (Critical and Non-Critical) Registered in S&P Global
Database
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Note: The large increase in mine registrations in 2013 likely reflects major data acquisitions by S&P
Global, suggesting mines registered in this year could potentially have been present prior to 2000.
Mine registrations in other years appear more steady and organic, allowing us to infer that they
most likely reflect real-time updates in mine presence. Exact dates of mine opening or production

start date are not consistently available in the database.
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Figure A3: Socioeconomic development indicators around mines
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Note: Data are from S&P Global Mining and Metals Database (2023) and the universe of Demo-
graphic and Health Surveys Program (2024) between 2000-2021; authors’ calculations. Values corre-
sponding with critical mines are averaged across all surveys completed within 20km of critical mine
locations. DHS sample average distributions reflect the distribution across all DHS surveys, which
are representative of the low- and middle-income countries covered by DHS. Household wealth
index ranges from 1 (poorest) to 5 (wealthiest). Share of households with child mortality measures
the share of households within a 20km circle around the mine that experienced one or more child
mortality events during the sample period.
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Figure A4: Local environmental and economic effects of mineral price shocks
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Note: All scatterplots are binned at 20 quantiles of the distribution of log commodity prices, residu-
alizing commodity fixed effects, country-by-year fixed effects, and controls for initial MNC owner-
ship, operator HHI, controlling operators” home-country GDP per capita, firm size, mine age, and
latitude, interacted with year indicators. Forest cover is measured as the share of pixels within 5
kilometers of the mine that are classified as tree cover. Forest cover sample is all countries with
tropical forest and mines with baseline forest cover greater than 20%. Local GDP is measured as the
log of total night lights-predicted GDP, in millions of USD, within 25 kilometers of the mine. Sample
is all registered mine-years from 2000-2022 for which the outcome variable is non-missing.
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Figure A5: Effects of price shocks on deforestation by critical and non-critical minerals
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Note: Figure shows estimates from commodity-specific regressions of on forest cover on commodity
prices. Bars indicate robust 95% confidence intervals. Sample is all mines in tropical countries with
greater than 20% baseline forest cover.
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Figure A6: Subnational corruption and foreign investor governance

1.4

[
[ ]
5 1.4 ° ®e
[}
2 ° ¢ ,-t""
£ - °
8 ® ° v"“
c -
§ 1.3 "‘0' -
o an” 0 ®
C>> _p"‘ °
> 13 “‘O‘
5 - °.
%)
2 .
£1.2
°
1.1
40 50 60 70 80

Subnational corrupion index

Note: All scatterplots are binned at 20 quantiles of the distribution of subnational corruption, resid-
ualizing commodity-by-year fixed effects. Investor governance index is the country-level average of
all Worldwide Governance Indicators (WGI) sub-indices for the country in which the largest mine
shareholder is headquartered, with larger numbers indicating better governance. The subnational
corruption index (SCI) is defined at the ADM1 level, with larger numbers indicating less corruption.
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A.3 Appendix Tables

Table A1: Socioeconomic and Environmental Indicators Around Critical Mines

Critical Mines Other Mines World Average

Socioeconomic Development Indicators

Population, thousands (2020) 75.8 112.2 66.3
Percent change in population since 2000 34.8 24.2 27.3
GDP per capita, thousands (2019) 76.0 74.0 11.338
Percent change in GDP p.c. since 2000 28.2 29.5 205.5
Urban Land-Use (2020) 1.5 24 0.7
Percent change in urban land-use since 2000 137.7 103.0 50.0
Number of Violent Conflicts (2020) 0.21 0.12 0.11
Percent change in violent conflicts since 2000 246.3 -14.0 2359
Conflict Deaths per 100k people (2020) 2.6 1.2 1.12
Percent change in conflict deaths/100k since 2000 205.1 84.5 -6.8
Subnational Corruption Index (2020) 59.7 61.2 60.65
Environmental Sustainability Indicators

Forest Cover (2020) 39.2 38.8 31.2
Located within Tropical Forest 9.3 9.9 14.2
Located within Biodiversity Hotspot 20.3 17.3 2.5
Percent change in forest cover since 2000 -0.7 -0.4 -2.4
Percent change in tropical forest cover since 2000 -0.9 0.9 -8.7
Air Pollution (2020) 11.9 13.3 17.9
Percent change in air pollution since 2000 -0.7 -3.7 0.6
Threatened Vertebrate Species in Area (2020) 6.4 6.8 104

Note: Values reported are sample means with the exception of GDP per capita, which reports medians to reduce the
influence of extreme outliers. World averages refer to a representative similarly-sized circle drawn randomly from the
earth’s terrestrial area.
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Table A2: Impact of price shocks on outcomes, by subnational corruption

Outcome Forest cover LogPM2.5 LogGDP LogPop Conflict
1) () 3) 4) ®)
Log price, t — 1 -28.690** 0.120 0.517%* 1.628*** 0.011
(13.940) (0.099) (0.255) (0.512) (0.022)
Log price, t — 1 x Subnational corruption index 0.421%* -0.002 -0.007*  -0.023***  -0.000
(0.252) (0.002) (0.004) (0.008) (0.000)
Observations 3551 16094 12551 3130 16094
R-squared 0.329 0.702 0.492 0.561 0.258
Commodity FE Yes Yes Yes Yes Yes
Year x Country FE Yes Yes Yes Yes Yes
Year x Controls Yes Yes Yes Yes Yes

Note: Standard errors, in parentheses, are clustered at the mine level. Forest cover is measured as the share of pixels within 5 kilometers
of the mine that are classified as tree cover. Forest cover sample is all countries with tropical rainforest (see Appendix B) and mines with
baseline forest cover greater than 20%. PM2.5 is measured as log of the total concentration of fine particulate matter, in u g/m3, within
25 kilometers of the mine. Local GDP is measured as the log of total night lights-predicted GDP, in USD, within 25 kilometers of the
mine, from Chen et al. (2022). Population is measured as log of the total population living within 25 kilometers of the mine, derived
from GPW estimates. Conflict is an indicator variable if there was any conflict within 25 kilometers if the mine in a given mine-year.
Subnational corruption index comes from Crombach and Smits (2024) and is defined at the ADM1 level, with larger values indicating
less corruption. Controls are initial MNC ownership, shareholder HHI, home-country GDP per capita, and firm size, as well as mine age
and latitude. Critical minerals definition can be found in Appendix A. Sample is all registered mine-years from 2000-2022 for which the
outcome variable, mineral prices, and the SCI are non-missing. *** p < 0.01, ** p < 0.05,* p < 0.1.

Table A3: Impact of price shocks on outcomes, by investor country governance

Outcome Forest cover LogPM2.5 LogGDP LogPop Conflict
1 2) 3) 4 ©®)
Log price, t — 1 -4.066** 0.004 0.098***  0.306***  -0.002
(1.825) (0.009) (0.029) (0.114) (0.002)
Log price, t —1 x Home governance index 1.203 -0.011 -0.016 -0.037 -0.000
(0.918) (0.007) (0.019) (0.037) (0.002)
Observations 13816 78638 66463 16004 79245
R-squared 0.223 0.843 0.584 0.646 0.253
Commodity FE Yes Yes Yes Yes Yes
Year x Country FE Yes Yes Yes Yes Yes
Year x Controls Yes Yes Yes Yes Yes

Note: Standard errors, in parentheses, are clustered at the mine level. Forest cover is measured as the share of pixels within 5
kilometers of the mine that are classified as tree cover. Forest cover sample is all countries with tropical rainforest (see Appendix
B) and mines with baseline forest cover greater than 20%. PM2.5 is measured as log of the total concentration of fine particulate
matter, in yg/m3, within 25 kilometers of the mine. Local GDP is measured as the log of total night lights-predicted GDPF, in USD,
within 25 kilometers of the mine, from Chen et al. (2022). Population is measured as log of the total population living within 25
kilometers of the mine, derived from GPW estimates. Conflict is an indicator variable if there was any conflict within 25 kilometers
if the mine in a given mine-year. Home governance index is the average value of the World Governance Index for the home country
of the mine’s largest shareholder. Controls are initial MNC ownership, shareholder HHI, home-country GDP per capita, and firm
size, as well as mine age and latitude. Critical minerals definition can be found in Appendix A. Sample is all registered mine-years
from 2000-2022 for which the outcome variable, prices, and investor governance are non-missing. *** p < 0.01, ** p < 0.05, *
p <0.1.
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Table A4: Impact of price shocks on mine output

Outcome Log output Producing Log output Producing
@ (2) (3) (4) ®) (6) ) (®)
Log price, t — 1 -0.089**  0.036 0.033** 0.014*
(0.044) (0.055) (0.008) (0.008)
Log price, t — 2 -0.029  0.081  0.049*** 0.031***
(0.047) (0.056) (0.008)  (0.008)
Observations 9570 9570 98613 98613 9260 9260 97338 97338
R-squared 0.940 0.949 0.620 0.665 0.941  0.949 0.626 0.670
Mine FE Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes No Yes No Yes No Yes No
Year x Country FE No Yes No Yes No Yes No Yes

Note: Standard errors, in parentheses, are clustered at the mine level. Producing is defined as an indicator variable if no
output is reported but the mine has reported ownership data to S&P. Sample is all registered mine-years from 2000-2022
for which the outcome variable and prices are non-missing. *** p < 0.01, ** p < 0.05,* p < 0.1.

Table A5: Impact of price shocks on local GDP: robustness to distances

Distance (km) 0-5 5-10 10-15 15-20 20-25
) ) ®) (4) (5)
Log price, t — 1 0.090**  0.103*** 0.088*** 0.067*** 0.092***
(0.032)  (0.028)  (0.027)  (0.026)  (0.027)
Observations 69359 69359 69412 69446 69446
R-squared 0.461 0.495 0.522 0.536 0.542
Commodity FE Yes Yes Yes Yes Yes
Year x Country FE Yes Yes Yes Yes Yes
Year x Controls Yes Yes Yes Yes Yes

Note: Standard errors, in parentheses, are clustered at the mine level. Local GDP is
measured as the log of total night lights-predicted GDP, in USD, within k kilometers of
the mine, from Chen et al. (2022), where k is given in the table header. Controls are
initial MNC ownership, shareholder HHI, home-country GDP per capita, and firm size,
as well as mine age and latitude. Critical minerals definition can be found in Appendix
A. Sample is all registered mine-years from 2000-2022 for which the outcome variable
and prices are non-missing. ** p < 0.01, ** p < 0.05,* p < 0.1.
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Table A6: Impact of price shocks on air pollution: robustness to distances

Distance (km) 0-5 5-10 10-15  15-20  20-25
1) 2) ®) (4) )

Log price, t — 1 -0.002 -0.001 -0.001 -0.001 -0.000

(0.008) (0.008) (0.008) (0.008) (0.008)

Observations 87949 87949 87956 87956 88004

R-squared 0.837 0.838 0.839 0.841 0.843
Commodity FE Yes Yes Yes Yes Yes
Year x Country FE  Yes Yes Yes Yes Yes
Year x Controls Yes Yes Yes Yes Yes

Note: Standard errors, in parentheses, are clustered at the mine level. PM2.5 is
measured as log of the total concentration of fine particulate matter, in pg/m3,
within k kilometers of the mine, where k is given in the table header. Controls are
initial MNC ownership, shareholder HHI, home-country GDP per capita, and firm
size, as well as mine age and latitude. Critical minerals definition can be found in
Appendix A. Sample is all registered mine-years from 2000-2022 for which the
outcome variable and prices are non-missing. ** p < 0.01, ** p < 0.05,* p < 0.1.

Table A7: Impact of price shocks on forest cover: robustness to baseline cover

Sample Tropical countries All mines
Threshold (%) 0 20 40 0 20 40
@ 2) 3 (4) ©) (6)
Log price, t — 1 -2220  -3.261*  -1.219  -1.472*% -2.791** -2.215%**
(1.523) (1.632) (1.817) (0.775) (0.682)  (0.610)
Observations 25486 15315 10782 69752 47328 38305
R-squared 0.311 0222 0.230  0.420 0.250 0.176
Commodity FE Yes Yes Yes Yes Yes Yes
Year x Country FE  Yes Yes Yes Yes Yes Yes
Year x Controls Yes Yes Yes Yes Yes Yes

Note: Standard errors, in parentheses, are clustered at the mine level. Forest cover is measured
as the share of pixels within 5 kilometers of the mine that are classified as tree cover. Forest cover
sample is given in table header: either all countries with tropical rainforest (columns 1-3) or the full
sample of mines (columns 4-6), where with baseline forest cover threshold varies from 0 to 40%.
Controls are initial MNC ownership, shareholder HHI, home-country GDP per capita, and firm
size, as well as mine age and latitude. Critical minerals definition can be found in Appendix A.
Sample is all registered mine-years from 2000-2022 for which the outcome variable and prices are
non-missing. *** p < 0.01, ** p < 0.05,* p < 0.1.
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Table A8: Impact of price shocks: robustness to lags

Outcome Forest cover LogPM2.5 LogGDP LogPop Conflict
) () 3 4 ©)
Log price, t — 2 -3.308** -0.004 0.072***  0.110* -0.002
(1.564) (0.007) (0.024) (0.067)  (0.002)
Observations 15211 87180 68296 16506 87881
R-squared 0.229 0.842 0.587 0.646 0.281
Commodity FE Yes Yes Yes Yes Yes
Year x Country FE Yes Yes Yes Yes Yes
Year x Controls Yes Yes Yes Yes Yes

Note: Standard errors, in parentheses, are clustered at the mine level. Forest cover is measured as the
share of pixels within 5 kilometers of the mine that are classified as tree cover. Forest cover sample
is all countries with tropical rainforest (see Appendix B) and mines with baseline forest cover greater
than 20%. PM2.5 is measured as log of the total concentration of fine particulate matter, in y g/m3,
within 25 kilometers of the mine. Local GDP is measured as the log of total night lights-predicted
GDP, in USD, within 25 kilometers of the mine, from Chen et al. (2022). Population is measured as log
of the total population living within 25 kilometers of the mine, derived from GPW estimates. Conflict
is an indicator variable if there was any conflict within 25 kilometers if the mine in a given mine-year.
Controls are initial MNC ownership, shareholder HHI, home-country GDP per capita, and firm size,
as well as mine age and latitude. Critical minerals definition can be found in Appendix A. Sample is
all registered mine-years from 2000-2022 for which the outcome variable and prices are non-missing.
**p <0.01,*p <0.05*p <0.1.

Table A9: Impact of price shocks: robustness to leads

Outcome Forest cover LogPM2.5 LogGDP LogPop Conflict
(1) 2) ®) (4) ©)
Log price, t -2.406 -0.004 0.089*** 0.071  -0.005***
(1.642) (0.008) (0.025) (0.084) (0.001)
Observations 15682 89325 71335 17865 90061
R-squared 0.230 0.843 0.587 0.647 0.284
Commodity FE Yes Yes Yes Yes Yes
Year x Country FE Yes Yes Yes Yes Yes
Year x Controls Yes Yes Yes Yes Yes

Note: Standard errors, in parentheses, are clustered at the mine level. Forest cover is measured as the
share of pixels within 5 kilometers of the mine that are classified as tree cover. Forest cover sample
is all countries with tropical rainforest (see Appendix B) and mines with baseline forest cover greater
than 20%. PM2.5 is measured as log of the total concentration of fine particulate matter, in yug/m3,
within 25 kilometers of the mine. Local GDP is measured as the log of total night lights-predicted
GDP, in USD, within 25 kilometers of the mine, from Chen et al. (2022). Population is measured as log
of the total population living within 25 kilometers of the mine, derived from GPW estimates. Conflict
is an indicator variable if there was any conflict within 25 kilometers if the mine in a given mine-year.
Controls are initial MNC ownership, shareholder HHI, home-country GDP per capita, and firm size,
as well as mine age and latitude. Critical minerals definition can be found in Appendix A. Sample is
all registered mine-years from 2000-2022 for which the outcome variable and prices are non-missing.
***p <0.01,* p <0.05*p <0.1.
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Table A10: Impact of price shocks on outcomes: robustness to shock measurement

Outcome Forest cover Log GDP
@ @ ) 4) ©) (6) @) ®)
Price shock 0.55D -0.263 0.039***
(0.254) (0.009)
Three-year 0.55D shock -0.616** 0.051%**
(0.293) (0.010)
Price shock 1SD -0.332 0.039%***
(0.290) (0.012)
Three-year 15D shock -0.775** 0.064***
(0.336) (0.012)
Observations 47824 47824 47824 47824 70925 70925 70925 70925
R-squared 0250 0250  0.250  0.250 0.581 0.581 0.581 0.581
Commodity FE Yes Yes Yes Yes Yes Yes Yes Yes
Year x Country FE Yes Yes Yes Yes Yes Yes Yes Yes
Year x Controls Yes Yes Yes Yes Yes Yes Yes Yes

Note: Standard errors, in parentheses, are clustered at the mine level. Forest cover is measured as the share of pixels within 5
kilometers of the mine that are classified as tree cover. Forest cover sample is all mines with baseline forest cover greater than
20%. Local GDP is measured as the log of total night lights-predicted GDP, in USD, within 25 kilometers of the mine, from Chen
et al. (2022). “Price shock” is measured as an indicator for years in which the commodity price is 0.5 or 1 SD greater than its
average over the sample period. “Three-year shock” is measured as an indicator for periods in which the commodity price has
been 0.5 or 1 SD greater than its average over the sample period for the past three consecutive years. Controls are initial MNC
ownership, shareholder HHI, home-country GDP per capita, and firm size, as well as mine age and latitude. Critical minerals
definition can be found in Appendix A. Sample is all registered mine-years from 2000-2022 for which the outcome variable and
prices are non-missing. *** p < 0.01, ** p < 0.05,* p < 0.1.
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Table A11: Impact of price shocks: pre-period outcomes

Sample Non-critical Critical
Outcome GDP  Forest GDP Forest
) ) ) (4)
Log price, t — 1 -0.013  0.746  -0.025***  1.076
(0.010) (0.807)  (0.009)  (0.803)
Commodity FE Yes Yes Yes Yes
Year x Country FE ~ Yes Yes Yes Yes
Year x Controls Yes Yes Yes Yes
Observations 190943 35189 83347 14852
R-squared 0.638  0.268 0.613 0.209

Note: Standard errors, in parentheses, are clustered at the mine level.
Forest cover is measured as the share of pixels within 5 kilometers of the
mine that are classified as tree cover. Forest cover sample is all coun-
tries with tropical rainforest (see Appendix B) and mines with baseline
forest cover greater than 20%. Local GDP is measured as the log of to-
tal night lights-predicted GDP, in USD, within 25 kilometers of the mine,
from Chen et al. (2022). Controls are initial MNC ownership, shareholder
HHI, home-country GDP per capita, and firm size, as well as mine age
and latitude. Critical minerals definition can be found in Appendix A.
Sample is all mine-years before the mine entered the S&P database, for
which the outcome variable and prices are non-missing. ** p < 0.01, **
p <0.05*p < 0.1
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Table A12: Impact of price shocks on local environmental and socioeconomic outcomes, cur-
rently active sample

Outcome Forest cover LogPM2.5 LogGDP LogPop Conflict
1) (2) 3 (4) ©)
Log price, t — 1 -2.334 0.002 0.094**  0.469***  0.002
(2.297) (0.010) (0.031) (0.149)  (0.002)
Observations 7854 43754 33433 8145 44126
R-squared 0.294 0.846 0.589 0.657 0.300
Commodity FE Yes Yes Yes Yes Yes
Year x Country FE Yes Yes Yes Yes Yes
Year x Controls Yes Yes Yes Yes Yes

Note: Standard errors, in parentheses, are clustered at the mine level. Forest cover is measured as the
share of pixels within 5 kilometers of the mine that are classified as tree cover. Forest cover sample
is all countries with tropical rainforest (see Appendix B) and mines with baseline forest cover greater
than 20%. PM2.5 is measured as log of the total concentration of fine particulate matter, in yg/m3,
within 25 kilometers of the mine. Local GDP is measured as the log of total night lights-predicted
GDP, in USD, within 25 kilometers of the mine, from Chen et al. (2022). Population is measured as log
of the total population living within 25 kilometers of the mine, derived from GPW estimates. Conflict
is an indicator variable if there was any conflict within 25 kilometers if the mine in a given mine-year.
Controls are initial MNC ownership, shareholder HHI, home-country GDP per capita, and firm size,
as well as mine age and latitude. Critical minerals definition can be found in Appendix A. Sample is
all mine-years from 2000-2022 indicated as active in 2022, for which the outcome variable and prices
are non-missing. *** p < 0.01, ** p < 0.05,* p < 0.1.

Table A13: Correlation between night lights-predicted GDP and DHS outcomes

Outcome Wealth Literacy Child mort. Sanitation
) 2) 3) 4)
Log GDP 0.479***  0.066*** -0.029*** 0.111%**
(0.023) (0.006) (0.003) (0.007)
Year x Country FE Yes Yes Yes Yes
Observations 2698 2698 2698 2698
R-squared 0.582 0.683 0.435 0.521

Note: Standard errors, in parentheses, are clustered at the mine level. Local GDP is
measured as the log of total night lights-predicted GDP, in USD, within 25 kilometers
of the mine, from Chen et al. (2022). Wealth index is measured as the standardized
DHS asset index. Literacy is the share of the adult population that is literate. Child
mortality is the share of births in which the child died before their 5th birthday. Im-
proved sanitation measures the share of households in the DHS sample with. All
mine-level DHS estimates use survey weights and are defined within 20 kilometers
of the mine. Critical minerals definition can be found in Appendix A. Sample is all
registered mine-years from 2000-2019 for which DHS data is available. *** p < 0.01,
**p <0.05*p <0.1.
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