Timing is Everything: Labor Market Winners and Losers from Energy Booms and Busts

Erik Katovich University of Geneva Dominic Parker UW-Madison Steven Poelhekke Vrije Universiteit Amsterdam CEPR

University of Geneva

October 6th, 2022

Sectoral Booms and Busts Can Have Long-Run Effects on Workers

Labor reallocation between booming and busting sectors is not frictionless

- Search and matching costs (Pissarides, 2014; Albrecht & Vroman, 2002)
- Skill loss during unemployment (Ortego-Marti, 2017)
- Skill mismatch between declining and expanding sectors (Şahin et al., 2014)
- Persistent penalties for bad entry timing (Davis & von Wachter, 2012)

Introduction

Sectoral Booms and Busts Can Have Long-Run Effects on Workers

Labor reallocation between booming and busting sectors is not frictionless

- Search and matching costs (Pissarides, 2014; Albrecht & Vroman, 2002)
- Skill loss during unemployment (Ortego-Marti, 2017)
- Skill mismatch between declining and expanding sectors (Şahin et al., 2014)
- Persistent penalties for bad entry timing (Davis & von Wachter, 2012)

Commodity-dependent countries face high sectoral volatility \rightarrow more frictions

Countries in blue are export-dependent on extractive commodities (Roe and Dodd, 2016)

Introduction

Context

Data Empirical Strategy

Results

Robustness O Mechanisms 000000 Conclusion O

•

Boom and Bust in Brazil's Oil & Gas Sector

Global Oil Prices and Offshore Oil & Gas Discoveries in Brazil

Boom and Bust in Employment: Oil and Closely-Linked Sectors

▶ Identifying Upstream and Downstream Sectors Using Input-Output Table

Oil-Linked Employment Growth Relative to Other Sectors

Introduction

Data E

Context

Empirical Strategy Resu

Robustness

Mechanisn 000000

1 Inequality Across Cohorts: How does timing of workers' entry into the oil sector relative to boom and bust cycles affect lifetime labor market outcomes?

Introduction

Context

ata Empirical Strategy 00 000

/ Results

Robustne

Aechanisms

Conclusior O | 4

- 1 Inequality Across Cohorts: How does timing of workers' entry into the oil sector relative to boom and bust cycles affect lifetime labor market outcomes?
 - > Few winners: early entrants capture almost all the benefits of the boom
 - > Many stranded: later entrants suffer earnings and employment penalties

troduction

Context

ata Empirical Strategy 00 000

Results

Robustnes

Mechanisms 000000 Conclusion O | 4

- 1 Inequality Across Cohorts: How does timing of workers' entry into the oil sector relative to boom and bust cycles affect lifetime labor market outcomes?
 - > Few winners: early entrants capture almost all the benefits of the boom
 - > Many stranded: later entrants suffer earnings and employment penalties
- 2 **Inequality Within Cohorts:** Does exposure to oil exert heterogeneous effects on workers of different education levels?

- 1 Inequality Across Cohorts: How does timing of workers' entry into the oil sector relative to boom and bust cycles affect lifetime labor market outcomes?
 - > Few winners: early entrants capture almost all the benefits of the boom
 - > Many stranded: later entrants suffer earnings and employment penalties
- 2 **Inequality Within Cohorts:** Does exposure to oil exert heterogeneous effects on workers of different education levels?
 - > High-ed workers earn more during booms and keep their jobs during busts
 - > Low-ed workers never enjoy earnings premiums during booms and lose their jobs during busts

Context

- 1 Inequality Across Cohorts: How does timing of workers' entry into the oil sector relative to boom and bust cycles affect lifetime labor market outcomes?
 - > Few winners: early entrants capture almost all the benefits of the boom
 - > Many stranded: later entrants suffer earnings and employment penalties
- 2 **Inequality Within Cohorts:** Does exposure to oil exert heterogeneous effects on workers of different education levels?
 - > High-ed workers earn more during booms and keep their jobs during busts
 - > Low-ed workers never enjoy earnings premiums during booms and lose their jobs during busts
- 3 Mechanisms: Why do high-education early entrants do so much better?

Context

Results 000000 Robustness

Mechanisms 000000

- 1 Inequality Across Cohorts: How does timing of workers' entry into the oil sector relative to boom and bust cycles affect lifetime labor market outcomes?
 - > Few winners: early entrants capture almost all the benefits of the boom
 - > Many stranded: later entrants suffer earnings and employment penalties
- 2 **Inequality Within Cohorts:** Does exposure to oil exert heterogeneous effects on workers of different education levels?
 - > High-ed workers earn more during booms and keep their jobs during busts
 - > Low-ed workers never enjoy earnings premiums during booms and lose their jobs during busts
- 3 Mechanisms: Why do high-education early entrants do so much better?
 - $^>~$ Accumulate knowledge in professional roles \rightarrow job and occupation stability
 - > Later entrants compete with glut of new oil-specific graduates

Context

Constructing Worker-Level Panels

RAIS (*Relação Anual de Informações Sociais*): linked registry of universe of formal employers-employees in Brazil

Identified worker-level panel data at job-year level (2003-2017)

Introduction

text Data

Empirical Strategy

y Results

Robustness

Mechanism 000000

Constructing Worker-Level Panels

RAIS (*Relação Anual de Informações Sociais*): linked registry of universe of formal employers-employees in Brazil

Identified worker-level panel data at job-year level (2003-2017)

In the paper, we analyze three types of entrants into oil-linked sectors:

- Poaches: workers who voluntarily leave a job and are rehired by a new firm within 4 months
- New Hires: workers hired into their first formal job, who may make education choices based on anticipated sectoral dynamics
- Unemployed/Informal Hires: workers hired out of unemployment or the informal sector

Constructing Worker-Level Panels

RAIS (*Relação Anual de Informações Sociais*): linked registry of universe of formal employers-employees in Brazil

Identified worker-level panel data at job-year level (2003-2017)

In the paper, we analyze three types of entrants into oil-linked sectors:

- Poaches: workers who voluntarily leave a job and are rehired by a new firm within 4 months
- New Hires: workers hired into their first formal job, who may make education choices based on anticipated sectoral dynamics
- Unemployed/Informal Hires: workers hired out of unemployment or the informal sector

Informality is Low in Oil-Linked Sectors

Note: Data are drawn from Brazil's Pesquisa Nacional por Amostra de Domicílios (PNAD), an annual nationally representative household survey.

Introduction

Data Empirical Strategy

y Results

Robustness

Vechanisms

Goal: Estimate causal effects of being poached or newly hired into an oil-linked sector on subsequent wages, employment, and earnings

Introduction

ext Data

Empirical Strategy

Results 000000 Robustness

Vechanisms

Goal: Estimate causal effects of being poached or newly hired into an oil-linked sector on subsequent wages, employment, and earnings

Challenge: Workers are not randomly hired into oil

Introduction

t Data Empir 000 000

Empirical Strategy R • 00 Robustness

Mechanisi 000000

Goal: Estimate causal effects of being poached or newly hired into an oil-linked sector on subsequent wages, employment, and earnings

Challenge: Workers are not randomly hired into oil

Strategy: Match workers poached into an oil-linked establishment in year t with counterfactual workers poached into other sectors in t

Exact match on:

- Demographics: schooling, sex, race, age bin
- ▶ Previous labor market experience: establishment (t − 1, t − 2), occupation category (t − 1, t − 2), wage bin (t − 1, t − 2)
- Destination municipality

 Introduction
 Context
 Data
 Empirical Strategy
 Results
 Robustness
 Mechanisms
 Concl

 0
 000
 000
 000
 000000
 0
 000000
 0

Goal: Estimate causal effects of being poached or newly hired into an oil-linked sector on subsequent wages, employment, and earnings

Challenge: Workers are not randomly hired into oil

Strategy: Match workers poached into an oil-linked establishment in year t with counterfactual workers poached into other sectors in t

Exact match on:

Introduction

Demographics: schooling, sex, race, age bin

Empirical Strategy

▶ Previous labor market experience: establishment (t − 1, t − 2), occupation category (t − 1, t − 2), wage bin (t − 1, t − 2)

Robustness

Destination municipality

Data

Use analogous strategy for **newly hired workers** and **workers hired from unemployment/informality**, omitting previous labor market experience

Step 2: Event Studies Around Hire into Oil-Linked Sector

- Let E_{ic} be period when worker *i* in cohort *c* is hired into oil. Let $K_{ict} = t E_{ic}$ be number of years before or after this event
- Let Y_{ict} be outcome (e.g., wages) for i in cohort c in year t
- Include worker and year fixed effects; cluster standard errors at worker level

$$Y_{ict} = \delta_i + \lambda_t + \sum_{k \neq -1} [\mathbb{1}(K_{ict} = k)]\beta_k + \epsilon_{it}$$

 Introduction
 Context
 Data
 Empirical Strategy
 Results
 Robustness
 Mechanisms
 Conclusio

 0
 000
 000
 0●0
 0000000
 0
 0000000
 0

Step 2: Event Studies Around Hire into Oil-Linked Sector

- Let E_{ic} be period when worker *i* in cohort *c* is hired into oil. Let $K_{ict} = t E_{ic}$ be number of years before or after this event
- Let Y_{ict} be outcome (e.g., wages) for i in cohort c in year t
- Include worker and year fixed effects; cluster standard errors at worker level

$$Y_{ict} = \delta_i + \lambda_t + \sum_{k
eq -1} [\mathbb{1}(K_{ict} = k)] \beta_k + \epsilon_{it}$$

Standard event study approach: center staggered events using relative time indicators to estimate average $\hat{\beta}_k$'s

We're interested in **cohort-specific** $\hat{\beta_{ck}}$'s \Rightarrow estimate event studies separately for each cohort *c* relative to **matched controls**

Identification

- Minimize bias from selection into treatment
 - 1 Exact matching on labor market characteristics over t, t 1 and t 2 captures nearly all information employers have access to when hiring
 - 2 Match on destination municipality accounts for location-specific shocks
 - 3 Worker-level fixed effects absorb time-invariant characteristics, including unobservables (e.g, ability, risk preferences)
 - 4 Comparing poaches to poaches avoids selection on willingness to leave job

Introduction Context Data Empirical Strategy Results Robustness Mechanisms Conclusion 000 000 000 000000 0 000000 0

Identification

- Minimize bias from selection into treatment
 - 1 Exact matching on labor market characteristics over t, t 1 and t 2 captures nearly all information employers have access to when hiring
 - 2 Match on destination municipality accounts for location-specific shocks
 - 3 Worker-level fixed effects absorb time-invariant characteristics, including unobservables (e.g, ability, risk preferences)
 - 4 Comparing poaches to poaches avoids selection on willingness to leave job
- Oil booms and busts are unpredictable, driven by exogenous world price changes and offshore discoveries

Identification

Introduction

Minimize bias from selection into treatment

Empirical Strategy

000

- 1 Exact matching on labor market characteristics over t, t 1 and t 2 captures nearly all information employers have access to when hiring
- 2 Match on destination municipality accounts for location-specific shocks
- 3 Worker-level fixed effects absorb time-invariant characteristics, including unobservables (e.g, ability, risk preferences)
- 4 Comparing poaches to poaches avoids selection on willingness to leave job
- Oil booms and busts are unpredictable, driven by exogenous world price changes and offshore discoveries

Strategy identifies "Average Treatment Effect in Matched Sample" (ATM)

Results: Hourly Wages After Poach into Oil-Linked Sector

Note: Wages deflated to 2018 BRL and transformed using IHS. Standard errors clustered at individual level. This specification keeps only employed individuals to focus on intensive margin.

Introduction Context Data Empirical Strategy **Results** Robustness Mechanisms Conclusion

Results: Hourly Wages After Poach into Oil-Linked Sector

Note: Wages deflated to 2018 BRL and transformed using IHS. Standard errors clustered at individual level. This specification keeps only employed individuals to focus on intensive margin.

Introduction	Context	Data	Empirical Strategy	Results	Robustness	Mechanisms	Conclusion
0	000	000	000	00000	0	000000	0

Results: Months Employed Per Year After Poach into Oil-Linked Sector 13

Note: Months employed ranges from zero if worker never appeared in RAIS registry during a year, to 12 if individual was employed each month. This specification keeps all treated individuals and matched controls (whether formally employed or not).

Introduction	Context	Data	Empirical Strategy	Results	Robustness	Mechanisms	Conclusion
0	000	000	000	000000	0	000000	0

Results: Annual Earnings After Poach into Oil-Linked Sector

Note: Annual earnings refers to total earnings across all formal jobs. Earnings are transformed using the IHS and deflated to 2018 BRL. This specification keeps all treated individuals and matched controls, whether formally employed or not. In periods where individuals do not appear in panel, they are ascribed a value of zero formal earnings.

 Introduction
 Context
 Data
 Empirical Strategy
 Results
 Robustness
 Mechanisms
 Conclusion

 0
 000
 000
 000
 000
 0
 0000000
 0
 0000000
 0

Takeaways: Effects of Oil & Gas on Poached Workers

Early entrants (2006) earn 31.6% higher wages and cumulative earnings premiums of \approx 763% baseline annual earnings by 2017

- 2008 cohort hit by brief 2008 bust and never recovers: earn 41.5% baseline average annual earnings *less* by 2017
- 2012 and 2014 cohorts hurt by 2014 bust: employed 39.7% fewer months by 2017
- All positive effects are among high-education workers; negative effects on low-education workers driven by extensive (employment) margin

Introduction Context Data Empirical Strategy Results Robustness Mechanisms Conclusion 000 000 000 000000 0 000000 0

Results: Annual Earnings After New Hire into Oil-Linked Sector

Note: Annual earnings refers to total earnings across all formal jobs. Earnings are transformed using IHS and deflated to 2018 BRL. To analyse effects at extensive margin, specification keeps all treated individuals and matched controls, whether formally employed or not, in strongly balanced panel. In periods where individuals do not appear in panel, they are ascribed a value of zero formal earnings.

troduction	Context	Data	Empirical Strategy	Results	Robustness	Mechanisms	Conclusion
1	000	000	000	000000	0	000000	0

Results may be sensitive to definition of "oil-linked" sectors or model specification

Introduction

ext Data

Empirical Strategy

Results

Robustness

Mechanism 000000 Conclusion O | 17

Results may be sensitive to definition of "oil-linked" sectors or model specification

1 Restrict sample to **directly oil-linked sectors** (no upstream or downstream) \rightarrow Direct Oil \rightarrow Effects are larger

Introduction

ontext Data

Empirical Strategy

Results 000000 Robustness

Mechanisms 000000 Conclusion O | 17

Results may be sensitive to definition of "oil-linked" sectors or model specification

- 1 Restrict sample to **directly oil-linked sectors** (no upstream or downstream) \rightarrow Direct Oil \rightarrow Effects are larger
- 2 Limit sample to **municipalities located within 100km. of a shipyard** (more likely to be truly oil-linked) \rightarrow Near Shipyards \rightarrow Effects are larger

Introduction Context Data Empirical Strategy Results **Robustness** Mechanisms Conclus ○ 000 000 000 0000 ● 000000 0

Results may be sensitive to definition of "oil-linked" sectors or model specification

- 1 Restrict sample to **directly oil-linked sectors** (no upstream or downstream) \rightarrow Direct Oil \rightarrow Effects are larger
- 2 Limit sample to **municipalities located within 100km. of a shipyard** (more likely to be truly oil-linked) \blacktriangleright Near Shipyards \rightarrow Effects are larger
- 3 Restrict sample to workers who share common support across cohorts \rightarrow Common Support \rightarrow Effects are unchanged

Results may be sensitive to definition of "oil-linked" sectors or model specification

- 1 Restrict sample to **directly oil-linked sectors** (no upstream or downstream) \rightarrow Direct Oil \rightarrow Effects are larger
- 2 Limit sample to **municipalities located within 100km. of a shipyard** (more likely to be truly oil-linked) \blacktriangleright Near Shipyards \rightarrow Effects are larger
- 3 Restrict sample to workers who share common support across cohorts \rightarrow Common Support \rightarrow Effects are unchanged

Stability or Transferability? Do early high-education poaches do well because they (i) retain jobs and occupations during busts, or (ii) are able to jump ship during busts?

Mechanisms •00000

Stability or Transferability? Do early high-education poaches do well because they (i) retain jobs and occupations during busts, or (ii) are able to jump ship during busts?

 \rightarrow Occupation and Job Stability

 Introduction
 Context
 Data
 Empirical Strategy
 Results
 Robustness
 Mechanisms
 Conclusion

 0
 000
 000
 000
 000000
 0
 ●000000
 0

Early High-Education Poaches Enjoy Occupation and Job Stability

Note: Outcome is a 0/1 indicator of whether the worker holds a different 4-digit CBO 2.0 Occupation Code from the one they were originally poached into. Establishment Switching

0

ntext Data

Empirical Strategy

Results 000000

Robustness O O Mechanisms 000000

Mechanism I Cont'd: Why Do Early High-Ed Poaches Do So Well?

2 Seniority-Bias or Knowledge-Accumulation and Replacement Costs? Do firms retain high-education early entrants during busts due to (i) seniority-biased labor regulations, or (ii) because these workers have firm-specific knowledge and are costly to replace?

Introduction

ntext Dat

a Empirical Strategy 0 000

Results 000000

Robustness

Mechanisms

Conclusion O | 20

Mechanism I Cont'd: Why Do Early High-Ed Poaches Do So Well?

2 Seniority-Bias or Knowledge-Accumulation and Replacement Costs? Do firms retain high-education early entrants during busts due to (i) seniority-biased labor regulations, or (ii) because these workers have firm-specific knowledge and are costly to replace?

 \rightarrow Knowledge-Accumulation and Asymmetric Replacement Costs

Introduction

text Data

Empirical Strategy

Results 000000

Robustness

Mechanisms

Conclusion O | 20

Mechanism I Cont'd: Why Do Early High-Ed Poaches Do So Well?

2 Seniority-Bias or Knowledge-Accumulation and Replacement Costs? Do firms retain high-education early entrants during busts due to (i) seniority-biased labor regulations, or (ii) because these workers have firm-specific knowledge and are costly to replace?

\rightarrow Knowledge-Accumulation and Asymmetric Replacement Costs

All workers in 2006 cohort have same seniority within firm, but only high-education workers are retained through bust

Poached Workers (2006 Cohort): Employment

Early High-Education Poaches Occupy Knowledge-Intensive Roles

Note: Professional roles are defined as CBO occupations with codes beginning with 2. These roles are primarily described as "researcher," "scientist," "engineer," "pilot," "doctor," "nurse," "professor," "lawyer,"

Managerial Roles and "analyst."

Empirical Strategy

Mechanisms 000000

Mechanism II: Education Response Reduces Premiums for Later Entrants 122

Oil-Linked Degree Programs

Note: Data are drawn from Brazil's annual Census of Higher Education.

Introduction	Context	Data	Empirical Strategy	Results	Robustness	Mechanisms	Conclusion
0	000	000	000	000000	0	000000	0

	Number of Graduates from Oil-Linked Majors				
Variables	Total	Public 4-Year	Private 4-Year	Public Tech.	Private Tech.
<50km from Shipyard	0.382***	0.257***	0.095*	0.073	0.278***
	(0.099)	(0.063)	(0.052)	(0.048)	(0.081)
Boom Year (2006-2013)	0.197***	-0.001	0.001	0.032***	0.184***
	(0.018)	(0.008)	(0.004)	(0.009)	(0.016)
Near × Boom	0.415***	0.032	0.019	0.048	0.522***
	(0.158)	(0.095)	(0.075)	(0.072)	(0.144)
State FEs	YES	YES	YES	YES	YES
Observations	16,600	16,600	16,600	16,600	16,600
DV Mean (IHS) (Pre-Boom)	0.073	0.045	0.001	0.007	0.029
R-squared	0.074	0.076	0.037	0.014	0.067

Note: Table reports results for the following specification:

 $y_{mt} = \beta \operatorname{Close}_m + \gamma \operatorname{Boom}_t + \delta(\operatorname{Close}_m \times \operatorname{Boom}_t) + \mu_s + \epsilon_{mt}$, where y_{mt} is the number of oil-linked graduates or oil-linked share of total graduates in municipality m in year t, Close_m indicates proximity to a shipyard (oil-industry hub), Boom_t indicates boom years, and $\operatorname{Close}_m \times \operatorname{Boom}_t$ is a diff-in-diff interaction term. Number of graduates uses inverse hyperbolic sine transformation. Robust standard errors in parentheses: *** p < 0.01, ** p < 0.05, * p < 0.1

Introduction

Data Empirical Strategy

gy Results

Robustness

Mechanisms

Conclusions

- Timing of entry into oil & gas sector has lasting impacts: Early entrants earn more than matched controls; workers who enter prior to or during busts suffer persistent penalties
- Inequality: Highly educated workers earn more during booms and keep jobs during busts; low-education workers never enjoy premiums during booms and loose their jobs during busts
- Highly educated early entrants accumulate firm-specific knowledge, making them costly to replace; low-education workers are firms' margin of adjustment to busts
- Oil boom provoked growth in sector-specific higher education (driven by technical training programs), bidding down premiums for later entrants

Empirical Strategy

lts Robust

Mechanis 00000 Conclusion

Petrobras Investment (Billions of 2010 \$BRL), by Area

Using Input-Output Matrix (67 \times 127) to Identify "Oil-Linked" Sectors $_{\parallel 26}$

Oil and Gas Sector	Leontief Coefficient
Oil and Gas Extraction and Support Activities	1.068
Top Upstream Sectors	
Legal, Accounting, and Consulting Services	0.055
Land Transportation of Cargo	0.039
Petroleum Refining and Coke Plants	0.032
Fabrication of Machines and Mechanical Equipment	0.027
Production of Pig Iron, Alloys, Steel, and Steel Pipes	0.023
Storage and Logistics	0.021
Construction	0.021
Maintenance, Repair, and Installation of Machines and Equipment	0.020
Architecture, Engineering, and R&D	0.018
Aquatic Transportation	0.017
Top Downstream Sectors	
Petroleum Refining and Coke Plants	0.411
Land Transportation of Cargo	0.088
Production of Organic and Inorganic Polymers and Resins	0.053
Electrical Energy and Utilities	0.047
Extraction of Non-Ferruginous Metals	0.045
Fabrication of Non-Metalic Mineral Products	0.029
Production and Refining of Sugar	0.029
Air Transportation	0.028
Production of Biofuels	0.027
Fabrication of Cellulose and Paper Products	0.026

Translating "Oil-Linked " I-O Codes into Fine-grained Activity Subclasses 127

5-Digit Input-Output SCN Codes

Translating "Oil-Linked " I-O Codes into Fine-grained Activity Subclasses 127

5-Digit Input-Output SCN Codes

 \Downarrow (SCN/CNAE 2.0 Conversion Table)

2-Digit CNAE 2.0 Activity Code Roots

Translating "Oil-Linked " I-O Codes into Fine-grained Activity Subclasses 127

5-Digit Input-Output SCN Codes

 \Downarrow (SCN/CNAE 2.0 Conversion Table)

2-Digit CNAE 2.0 Activity Code Roots

 \Downarrow (Manual Assignment)

7-Digit CNAE 2.0 Activity Subclasses

Translating "Oil-Linked " I-O Codes into Fine-grained Activity Subclasses |27

5-Digit Input-Output SCN Codes

 \Downarrow (SCN/CNAE 2.0 Conversion Table)

2-Digit CNAE 2.0 Activity Code Roots

 \Downarrow (Manual Assignment)

7-Digit CNAE 2.0 Activity Subclasses

∜

14 Directly-Linked, 109 Upstream, 31 Downstream Subclasses Preturn

Net Employment Growth

Return

Direct-Loose Poached: Wages

29

Direct-Loose Poached: Months Employed

Direct-Loose Poached: Annual Earnings

| 31

Close to Shipyards Poached: Wages

Close to Shipyards Poached: Months Employed

Months Employed Per Year 2006 Cohort 2014 Cohort 2008 Cohort 2010 Cohort 2012 Cohort 2.5 2.5 Coefficient Estimate with 95% CI 1.5 -1 -5 0 .5 1 1.5 2 2.5 ŝ ŝ ŝ -0 ÷ -0 \$ 2014 2015 2016 2016 2017 2009 2012 2013 2014 2015 2015 2015 2015 2016 2016 2017 2017 Full Sample 1.5 2.5 Coefficient Estimate with 95% 5 -4.5 -3.5 -2.5 -1.5 -2. 5 -4.5 -3.5 -2.5 -1.5 5 -4.5 -3.5 -2.5 -1 5 -4.5 -3.5 -2.5 -1 -4.5 -3.5 -2.5 2015 2016 2017 2015 2016 2017 Less Than High School High School More Than High School

Close to Shipyards Poached: Annual Earnings

| 34

Close to Shipyards New Hires: Wages

Close to Shipyards New Hires: Months Employed

| 36

Close to Shipyards New Hires: Annual Earnings

Callaway and Sant'Anna (2021): Wages

Callaway and Sant'Anna (2021): Months Employed

Callaway and Sant'Anna (2021): Annual Earnings

| 40

Early High-Education Poaches Enjoy Establishment Stability

Early High-Education Poaches Do Not Enter Management

Professional Roles for Newly Hired Workers

Note: Professional roles are defined as CBO occupations with codes beginning with 2. These roles are primarily described as "researcher," "scientist," "engineer," "pilot," "doctor," "nurse," "professor," "lawyer," and "analyst."

Defining Oil-Linked College Majors

Oil-Linked M	ajors (Narrow Definition)
Petroleum Engineering	Environmental Management
Geological Engineering	Naval maintenance
Naval Engineering	Petrochemical Maintenance
Shipbuilding	Mining & Extraction
Shipbuilding (non-motorized)	Marine Navigation
Naval Construction	Operation of Ships
Environmental Control	Paleontology
Water Pollution Control	Petrology
Extraction of Petroleum & Gas	Processing of Petroleum & Petrochemicals
Geoscience	Petroleum Refining
Geophysics	Environmental Cleanup
Geology	Environmental Protection Technology

Disaggregate degree programs into:

- 4-Year and Technical
- Public and Private
- STEM and Other

Return